Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

CAR T cell therapies for patients with multiple myeloma

Abstract

Despite several therapeutic advances over the past decade, multiple myeloma (MM) remains largely incurable, indicating a need for new treatment approaches. Chimeric antigen receptor (CAR) T cell therapy works by mechanisms distinct from those of other MM therapies and involves the modification of patient or donor T cells to target specific cell-surface antigens. B cell maturation antigen (BCMA) is expressed only on plasma cells, a small subset of B cells and MM cells, which makes it a suitable target antigen for such therapies. At the time of writing, data from >20 clinical trials involving anti-BCMA CAR T cells have demonstrated that patients with relapsed and/or refractory MM can achieve objective responses. These early investigations have been instrumental in demonstrating short-term safety and efficacy; however, most patients do not have disease remission lasting >18 months. Attempts to reduce or delay the onset of relapsed disease are underway and include identifying additional CAR T cell target antigens and methods of enhancing BCMA expression on MM cells. Engineering CAR T cells to enhance both the activity and safety of treatment continues to be a promising avenue for improvement. In this Review we summarize data from clinical trials that have been carried out to date, describe novel antigens that could be targeted in the future, and highlight potential future innovations that could enhance the efficacy and/or reduce the toxicities associated with CAR T cell therapies.

Key points

  • New treatments for relapsed and/or refractory multiple myeloma (MM) are needed. Chimeric antigen receptor (CAR) T cells targeting B cell maturation antigen (BCMA) have demonstrated efficacy in patients with heavily pretreated MM with deep remission in a subset of patients.

  • Results from the many clinical trials testing anti-BCMA CAR T cells will help guide the development of the next generation of CAR T cell therapies for patients with MM.

  • The phenotypic heterogeneity of MM poses a major barrier to achieving durable, relapse-free responses with CAR T cells and necessitates improvements in the current approaches.

  • Targeting new antigens, either alone or in combination with BCMA, or using pharmacological agents to increase target antigen density on MM cells might reduce the risk of MM relapse following treatment with CAR T cells.

  • Optimizing CAR designs by modifying the antigen-binding, co-stimulatory, hinge and/or transmembrane domains might improve clinical outcomes. Including a genetically encoded suicide switch might improve the overall safety of CAR T cell therapy.

  • Substitution of standard lymphodepleting chemotherapy regimens with drugs that have greater activity against MM or adding maintenance therapy after CAR T cell infusion might result in more durable and/or deeper responses.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Heterogeneity and resistance of MM subclones.
Fig. 2: Structure of a CAR.
Fig. 3: Structure of CARs and CAR-expressing T cells.

Similar content being viewed by others

References

  1. Röllig, C., Knop, S. & Bornhäuser, M. Multiple myeloma. Lancet 385, 2197–2208 (2015).

    PubMed  Google Scholar 

  2. Kumar, S. K. et al. Multiple myeloma. Nat. Rev. Dis. Prim. 3, 17046 (2017).

    PubMed  Google Scholar 

  3. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 70, 7–30 (2020).

    PubMed  Google Scholar 

  4. Nandakumar, B. et al. Continued improvement in survival in multiple myeloma (MM) including high-risk patients. J. Clin. Oncol. 37, 8039–8039 (2019).

    Google Scholar 

  5. Bolli, N. et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat. Commun. 5, 2997 (2014).

    PubMed  PubMed Central  Google Scholar 

  6. Furukawa, Y. & Kikuchi, J. Molecular basis of clonal evolution in multiple myeloma. Int. J. Hematol. 111, 496–511 (2020).

    PubMed  Google Scholar 

  7. Kumar, S. K. & Rajkumar, S. V. The multiple myelomas — current concepts in cytogenetic classification and therapy. Nat. Rev. Clin. Oncol. 15, 409–421 (2018).

    CAS  PubMed  Google Scholar 

  8. Durer, C. et al. Treatment of relapsed multiple myeloma: evidence-based recommendations. Blood Rev. 39, 100616 (2020).

    PubMed  Google Scholar 

  9. Laubach, J. et al. Management of relapsed multiple myeloma: recommendations of the International Myeloma Working Group. Leukemia 30, 1005–1017 (2016).

    CAS  PubMed  Google Scholar 

  10. Kochenderfer, J. N. & Rosenberg, S. A. Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nat. Rev. Clin. Oncol. 10, 267–276 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sadelain, M., Brentjens, R. & Riviere, I. The basic principles of chimeric antigen receptor design. Cancer Discov. 3, 388–398 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sadelain, M., RiviSre, I. & Riddell, S. Therapeutic T cell engineering. Nature 545, 423–431 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ali, S. A. et al. T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood 128, 1688–1700 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Brudno, J. N. et al. T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J. Clin. Oncol. 36, 2267–2280 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kochenderfer, J. N. et al. Lymphoma remissions caused by anti-CD19 chimeric antigen receptor T cells are associated with high serum interleukin-15 levels. J. Clin. Oncol. 35, 1803–1813 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Brudno, J. N. & Kochenderfer, J. N. Chimeric antigen receptor T-cell therapies for lymphoma. Nat. Rev. Clin. Oncol. 15, 31–46 (2018).

    CAS  PubMed  Google Scholar 

  17. Neelapu, S. S. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Schuster, S. J. et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N. Engl. J. Med. 377, 2545–2554 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Levine, B. L., Miskin, J., Wonnacott, K. & Keir, C. Global manufacturing of CAR T cell therapy. Mol. Ther. Methods Clin. Dev. 4, 92–101 (2017).

    CAS  PubMed  Google Scholar 

  20. Wang, X. & Rivière, I. Clinical manufacturing of CAR T cells: foundation of a promising therapy. Mol. Ther. Oncolytics 3, 16015 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Raje, N. et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N. Engl. J. Med. 380, 1726–1737 (2019).

    CAS  PubMed  Google Scholar 

  22. Barnett, B. E. et al. piggyBacTM-produced CAR-T cells exhibit stem-cell memory phenotype [abstract]. Blood 128, 2167 (2016).

    Google Scholar 

  23. Yang, Y., Jacoby, E. & Fry, T. J. Challenges and opportunities of allogeneic donor-derived CAR T cells. Curr. Opin. Hematol. 22, 509–515 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Srivastava, S. & Riddell, S. R. Engineering CAR-T cells: design concepts. Trends Immunol. 36, 494–502 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lim, W. A. & June, C. H. The principles of engineering immune cells to treat cancer. Cell 168, 724–740 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Klebanoff, C. A., Khong, H. T., Antony, P. A., Palmer, D. C. & Restifo, N. P. Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol. 26, 111–117 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gattinoni, L. et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J. Exp. Med. 202, 907–912 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Cohen, A. D. et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J. Clin. Invest. 129, 2210–2221 (2019).

    PubMed  PubMed Central  Google Scholar 

  29. Xu, J. et al. Exploratory trial of a biepitopic CAR T-targeting B cell maturation antigen in relapsed/refractory multiple myeloma. Proc. Natl Acad. Sci. USA 116, 9543–9551 (2019).

    CAS  PubMed  Google Scholar 

  30. Wang, B.-Y. et al. Long-term follow-up of a phase 1, first-in-human open-label study of LCAR-B38M, a structurally differentiated chimeric antigen receptor T (CAR-T) cell therapy targeting B-cell maturation antigen (BCMA), in patients (pts) with relapsed/refractory multiple myeloma (RRMM) [abstract]. Blood 134 (Suppl. 1), 579 (2019).

    Google Scholar 

  31. Zhao, W. H. et al. A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma. J. Hematol. Oncol. 11, 141 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mailankody, S. et al. Clinical responses and pharmacokinetics of MCARH171, a human-derived BCMA targeted CAR T cell therapy in relapsed/refractory multiple myeloma: final results of a phase I clinical trial [abstract]. Blood 132 (Suppl. 1), 959 (2018).

    Google Scholar 

  33. Garfall, A. L. et al. Combination anti-Bcma and anti-CD19 CAR T cells as consolidation of response to prior therapy in multiple myeloma [abstract]. Blood 134 (Suppl. 1), 1863 (2019).

    Google Scholar 

  34. Berdeja, J. G. et al. Updated results from an ongoing phase 1 clinical study of bb21217 anti-BCMA CAR T cell therapy [abstract]. Blood 134 (Suppl. 1), 927 (2019).

    Google Scholar 

  35. Madduri, D. et al. Results from CARTITUDE-1: a phase 1b/2 study of JNJ-4528, a CAR-T cell therapy directed against B-cell maturation antigen (BCMA), in patients with relapsed and/or refractory multiple myeloma (R/R MM) [abstract]. Blood 134 (Suppl. 1), 577 (2019).

    Google Scholar 

  36. Zudaire, E. et al. Translational analysis from CARTITUDE-1, an ongoing phase 1b/2 study of JNJ-4528 BCMA-targeted CAR-T cell therapy in relapsed and/or refractory multiple myeloma (R/R MM), indicates preferential expansion of CD8+ T cell central memory cell subset [abstract]. Blood 134 (Suppl. 1), 928 (2019).

    Google Scholar 

  37. Ilic, D. & Liovic, M. Industry updates from the field of stem cell research and regenerative medicine in December 2019. Regen. Med. 15, 1499–1507 (2020).

    CAS  Google Scholar 

  38. Green, D. et al. Fully human BCMA targeted chimeric antigen receptor T cells administered in a defined composition demonstrate potency at low doses in advanced stage high risk multiple myeloma [abstract]. Blood 132 (Suppl. 1), 1011 (2018).

    Google Scholar 

  39. Mikkilineni, L. et al. T cells expressing an anti-B-cell maturation antigen (BCMA) chimeric antigen receptor with a fully-human heavy-chain-only antigen recognition domain induce remissions in patients with relapsed multiple myeloma [abstract]. Blood 134 (Suppl. 1), 3230 (2019).

    Google Scholar 

  40. Cowan, A. J. et al. Efficacy and safety of fully human Bcma CAR T cells in combination with a gamma secretase inhibitor to increase Bcma Surface expression in patients with relapsed or refractory multiple myeloma [abstract]. Blood 134 (Suppl. 1), 204 (2019).

    Google Scholar 

  41. Green, D. et al. Response to BCMA CAR-T cells correlates with pretreatment target antigen density and is improved by small molecule inhibition of gamma secretase [abstract]. Blood 134 (Suppl. 1), 1856 (2019).

    Google Scholar 

  42. Lee, D. W. et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol. Blood Marrow Transplant. 25, 625–638 (2019).

    CAS  PubMed  Google Scholar 

  43. Neelapu, S. S. et al. Chimeric antigen receptor T-cell therapy – assessment and management of toxicities. Nat. Rev. Clin. Oncol. 15, 47–62 (2018).

    CAS  PubMed  Google Scholar 

  44. Porter, D., Frey, N., Wood, P. A., Weng, Y. & Grupp, S. A. Grading of cytokine release syndrome associated with the CAR T cell therapy tisagenlecleucel. J. Hematol. Oncol. 11, 35 (2018).

    PubMed  PubMed Central  Google Scholar 

  45. Lee, D. W. et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 124, 188–195 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kumar, S. et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 17, e328–e346 (2016).

    PubMed  Google Scholar 

  47. Brudno, J. N. & Kochenderfer, J. N. Recent advances in CAR T-cell toxicity: mechanisms, manifestations and management. Blood Rev. 34, 45–55 (2019).

    CAS  PubMed  Google Scholar 

  48. Giavridis, T. et al. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat. Med. 24, 731–738 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Schaefer, A. et al. Cytopenias after chimeric antigen receptor T-cells (CAR-T) infusion; patterns and outcomes. Biol. Blood Marrow Transplant. 25, S171 (2019).

    Google Scholar 

  50. Gust, J. et al. Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov. 7, 1404–1419 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Shalabi, H. et al. Systematic evaluation of neurotoxicity in children and young adults undergoing CD22 chimeric antigen receptor T-cell therapy. J. Immunother. 41, 350–358 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Gargett, T. & Brown, M. P. The inducible caspase-9 suicide gene system as a “safety switch” to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells. Front.Pharmacol. 5, 235 (2014).

    PubMed  PubMed Central  Google Scholar 

  53. Jones, B. S., Lamb, L. S., Goldman, F. & Di Stasi, A. Improving the safety of cell therapy products by suicide gene transfer. Front.Pharmacol. 5, 254 (2014).

    PubMed  PubMed Central  Google Scholar 

  54. Casucci, M. et al. Co-expression of a suicide gene in CAR-redirected T cells enables the safe targeting of CD44v6 for leukemia and myeloma eradication [abstract]. Blood 120 (21), 949 (2012).

    Google Scholar 

  55. Casucci, M. et al. Extracellular NGFR spacers allow efficient tracking and enrichment of fully functional CAR-T cells co-expressing a suicide gene. Front. Immunol. 9, 507 (2018).

    PubMed  PubMed Central  Google Scholar 

  56. Di Stasi, A. et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N. Engl. J. Med. 365, 1673–1683 (2011).

    PubMed  PubMed Central  Google Scholar 

  57. Lamers, C. H. et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J. Clin. Oncol. 24, e20–e22 (2006).

    PubMed  Google Scholar 

  58. Morgan, R. A. et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 18, 843–851 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Laâbi, Y. et al. A new gene, BCM, on chromosome 16 is fused to the interleukin 2 gene by a t(4;16)(q26;p13) translocation in a malignant T cell lymphoma. EMBO J. 11, 3897–3904 (1992).

    PubMed  PubMed Central  Google Scholar 

  60. Novak, A. J. et al. Expression of BCMA, TACI, and BAFF-R in multiple myeloma: a mechanism for growth and survival. Blood 103, 689–694 (2004).

    CAS  PubMed  Google Scholar 

  61. Carpenter, R. O. et al. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin. Cancer Res. 19, 2048–2060 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. O’Connor, B. P. et al. BCMA is essential for the survival of long-lived bone marrow plasma cells. J. Exp. Med. 199, 91–98 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ng, L. G. et al. B cell-activating factor belonging to the TNF family (BAFF)-R is the principal BAFF receptor facilitating BAFF costimulation of circulating T and B cells. J. Immunol. 173, 807–817 (2004).

    CAS  PubMed  Google Scholar 

  64. Kochenderfer, J. N. et al. Long-duration complete remissions of diffuse large B cell lymphoma after anti-CD19 chimeric antigen receptor T cell therapy. Mol. Ther. 25, 2245–2253 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Brudno, J. N. et al. Safety and feasibility of anti-CD19 CAR T cells with fully human binding domains in patients with B-cell lymphoma. Nat. Med. 26, 270–280 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Friedman, K. M. et al. Effective targeting of multiple B-cell maturation antigen-expressing hematological malignances by anti-B-cell maturation antigen chimeric antigen receptor T cells. Hum. Gene Ther. 29, 585–601 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Bristol Myers Squibb. Bristol-Myers Squibb and bluebird bio Announce Positive Top-line Results from the Pivotal Phase 2 KarMMa Study of Ide-cel in Relapsed and Refractory Multiple Myeloma https://news.bms.com/press-release/corporatefinancial-news/bristol-myers-squibb-and-bluebird-bio-announce-positive-top-li (2019).

  68. Harrington, K. et al. Development of JCARH125: optimization of a fully human anti-BCMA CAR for use in the treatment of multiple myeloma [abstract]. Blood 130 (Suppl. 1), 1813 (2017).

    Google Scholar 

  69. Mailankody, S. et al. JCARH125, anti-BCMA CAR T-cell therapy for relapsed/refractory multiple myeloma: initial proof of concept results from a phase 1/2 multicenter study (EVOLVE) [abstract]. Blood 132 (Suppl. 1), 957 (2018).

    Google Scholar 

  70. Shah, U. A. & Mailankody, S. CAR T and CAR NK cells in multiple myeloma: expanding the targets. Best Pract. Res. Clin. Haematol. 33, 101141 (2020).

    PubMed  Google Scholar 

  71. Shah, U. A. & Smith, E. L. Multiple myeloma, targeting B-cell maturation antigen with chimeric antigen receptor T-cells. Cancer J. 25, 208–216 (2019).

    CAS  PubMed  Google Scholar 

  72. Zhao, W.-H. et al. Updated analysis of a phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B-cell maturation antigen, in patients with relapsed/refractory multiple myeloma [abstract]. Blood 132 (Suppl. 1), 955 (2018).

    Google Scholar 

  73. Du, H. et al. Antitumor responses in the absence of toxicity in solid tumors by targeting B7-H3 via chimeric antigen receptor T cells. Cancer Cell 35, 221–237.e8 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Lam, N. et al. Anti-BCMA chimeric antigen receptors with fully human heavy-chain-only antigen recognition domains. Nat. Commun. 11, 283 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Smith, E. L. et al. Development and evaluation of a human single chain variable fragment (scFv) derived BCMA targeted CAR T cell vector leads to a high objective response rate in patients with advanced MM [abstract]. Blood 130 (Suppl. 1), 742 (2017).

    Google Scholar 

  76. Turtle, C. J. et al. Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci. Transl Med. 8, 355ra116 (2016).

    PubMed  PubMed Central  Google Scholar 

  77. Barnett, B. E. et al. Development of novel non-immunoglobulin Centyrin-based Cars (CARTyrins) targeting human BCMA [abstract]. Blood 128 (22), 4557 (2016).

    Google Scholar 

  78. Hermanson, D. L. et al. A novel BCMA-specific, Centyrin-based CAR-T product for the treatment of multiple myeloma [abstract]. Blood 128 (22), 2127 (2016).

    Google Scholar 

  79. Gregory, T. et al. Efficacy and safety of P-BCMA-101 CAR-T cells in patients with relapsed/refractory (r/r) multiple myeloma (MM) [abstract]. Blood 132 (Suppl. 1), 1012 (2018).

    Google Scholar 

  80. Pont, M. J. et al. γ-Secretase inhibition increases efficacy of BCMA-specific chimeric antigen receptor T cells in multiple myeloma. Blood 134, 1585–1597 (2019).

    PubMed  PubMed Central  Google Scholar 

  81. Dammacco, F., Leone, P., Silvestris, F., Racanelli, V. & Vacca, A. in Oncogenomics (eds Franco Dammacco & Franco Silvestris) 121–137 (Academic Press, 2019).

  82. Brennan, S. K. & Matsui, W. Cancer stem cells: controversies in multiple myeloma. J. Mol. Med. 87, 1079 (2009).

    PubMed  Google Scholar 

  83. Hajek, R., Okubote, S. A. & Svachova, H. Myeloma stem cell concepts, heterogeneity and plasticity of multiple myeloma. Br. J. Haematol. 163, 551–564 (2013).

    PubMed  Google Scholar 

  84. Gao, M., Kong, Y., Yang, G., Gao, L. & Shi, J. Multiple myeloma cancer stem cells. Oncotarget 7, 35466–35477 (2016).

    PubMed  PubMed Central  Google Scholar 

  85. Garfall, A. et al. Pilot study of anti-CD19 chimeric antigen receptor T cells (CTL019) in conjunction with salvage autologous stem cell transplantation for advanced multiple myeloma [abstract]. Blood 128 (22), 974 (2016).

    Google Scholar 

  86. Garfall, A. L. et al. Chimeric antigen receptor T cells against CD19 for multiple myeloma. N. Engl. J. Med. 373, 1040–1047 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang, H. et al. A BCMA and CD19 bispecific CAR-T for relapsed and refractory multiple myeloma [abstract]. Blood 134 (Suppl. 1), 3147 (2019).

    Google Scholar 

  88. Shi, X. et al. Combined infusion of anti-CD19 and anti-BCMA CART cells after early or later transplantation in the front line was superior to salvage therapy for high risk MM [abstract]. Blood 134 (Suppl. 1), 1949 (2019).

    Google Scholar 

  89. Garfall, A. L. et al. Anti-CD19 CAR T cells with high-dose melphalan and autologous stem cell transplantation for refractory multiple myeloma. JCI Insight 3, e120505 (2018).

    PubMed Central  Google Scholar 

  90. Vairy, S., Garcia, J. L., Teira, P. & Bittencourt, H. CTL019 (tisagenlecleucel): CAR-T therapy for relapsed and refractory B-cell acute lymphoblastic leukemia. Drug Des. Devel. Ther. 12, 3885–3898 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Yan, Z. L. et al. A combination of humanised anti-CD19 and anti-BCMA CAR T cells in patients with relapsed or refractory multiple myeloma: a single-arm, phase 2 trial. Lancet Haematol. 6, E521–E529 (2019).

    PubMed  Google Scholar 

  92. Hsi, E. D. et al. CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin. Cancer Res. 14, 2775–2784 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Wu, N. & Veillette, A. SLAM family receptors in normal immunity and immune pathologies. Curr. Opin. Immunol. 38, 45–51 (2016).

    CAS  PubMed  Google Scholar 

  94. Veillette, A. & Guo, H. CS1, a SLAM family receptor involved in immune regulation, is a therapeutic target in multiple myeloma. Crit. Rev. Oncol. Hematol. 88, 168–177 (2013).

    PubMed  Google Scholar 

  95. Gogishvili, T. et al. SLAMF7-CAR T cells eliminate myeloma and confer selective fratricide of SLAMF7(+) normal lymphocytes. Blood 130, 2838–2847 (2017).

    CAS  PubMed  Google Scholar 

  96. Calpe, S. et al. in Advances in Immunology Vol. 97 (ed. Alt, F. W.) 177–250 (Academic Press, 2008).

  97. Boles, K. S. & Mathew, P. A. Molecular cloning of CS1, a novel human natural killer cell receptor belonging to the CD2 subset of the immunoglobulin superfamily. Immunogenetics 52, 302–307 (2001).

    CAS  PubMed  Google Scholar 

  98. Boudreault, J. S., Touzeau, C. & Moreau, P. The role of SLAMF7 in multiple myeloma: impact on therapy. Expert. Rev. Clin. Immunol. 13, 67–75 (2017).

    CAS  PubMed  Google Scholar 

  99. Lonial, S. et al. Update on elotuzumab, a novel anti-SLAMF7 monoclonal antibody for the treatment of multiple myeloma. Expert. Opin. Biol. Ther. 16, 1291–1301 (2016).

    CAS  PubMed  Google Scholar 

  100. Chu, J. et al. Genetic modification of T cells redirected toward CS1 enhances eradication of myeloma cells. Clin. Cancer Res. 20, 3989–4000 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Lonial, S. et al. Elotuzumab therapy for relapsed or refractory multiple myeloma. N. Engl. J. Med. 373, 621–631 (2015).

    CAS  PubMed  Google Scholar 

  102. Smith, E. L. et al. GPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed CAR T cells. Sci. Transl Med. 11, eaau7746 (2019).

    PubMed  PubMed Central  Google Scholar 

  103. Fernandez de Larrea, C. et al. Optimal dual-targeted CAR construct simultaneously targeting BCMA and GPRC5D prevents BCMA-escape driven relapse in multiple myeloma [abstract]. Blood 134 (Suppl. 1), 136 (2019).

    Google Scholar 

  104. Shi, X. et al. Tandom autologous transplantation and combined infusion of CD19 and BCMA-specific chimeric antigen receptor T cells for high risk MM: initial safety and efficacy report from a clinical pilot study [abstract]. Blood 132 (Suppl. 1), 1009 (2018).

    Google Scholar 

  105. Ran, Y. et al. γ-Secretase inhibitors in cancer clinical trials are pharmacologically and functionally distinct. EMBO Mol. Med. 9, 950–966 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Smith, E. L. et al. Development and evaluation of an optimal human single-chain variable fragment-derived BCMA-targeted CAR T cell vector. Mol. Ther. 26, 1447–1456 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Salter, A. I. et al. Phosphoproteomic analysis of chimeric antigen receptor signaling reveals kinetic and quantitative differences that affect cell function. Sci. Signal. 11, eaat6753 (2018).

    PubMed  PubMed Central  Google Scholar 

  108. Alabanza, L. et al. Function of novel anti-CD19 chimeric antigen receptors with human variable regions is affected by hinge and transmembrane domains. Mol. Ther. 25, 2452–2465 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Weinkove, R., George, P., Dasyam, N. & McLellan, A. D. Selecting costimulatory domains for chimeric antigen receptors: functional and clinical considerations. Clin. Transl Immunol. 8, e1049 (2019).

    Google Scholar 

  110. Zhao, Z. et al. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell 28, 415–428 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Geldres, C., Savoldo, B. & Dotti, G. Chimeric antigen receptor-redirected T cells return to the bench. Semin. Immunol. 28, 3–9 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ying, Z. et al. A safe and potent anti-CD19 CAR T cell therapy. Nat. Med. 25, 947–953 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang, X., Sun, S., Hwang, I., Tough, D. F. & Sprent, J. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 8, 591–599 (1998).

    CAS  PubMed  Google Scholar 

  114. Xu, Y. et al. Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood 123, 3750–3759 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Sabatino, M. et al. Generation of clinical-grade CD19-specific CAR-modified CD8+ memory stem cells for the treatment of human B-cell malignancies. Blood 128, 519–528 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Depil, S., Duchateau, P., Grupp, S. A., Mufti, G. & Poirot, L. ‘Off-the-shelf’ allogeneic CAR T cells: development and challenges. Nat. Rev. Drug Discov. 19, 185–199 (2020).

    CAS  PubMed  Google Scholar 

  117. Shimasaki, N., Jain, A. & Campana, D. NK cells for cancer immunotherapy. Nat. Rev. Drug Discov. 19, 200–218 (2020).

    CAS  PubMed  Google Scholar 

  118. Rezvani, K. Adoptive cell therapy using engineered natural killer cells. Bone Marrow Transplant. 54, 785–788 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Liu, E. et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N. Engl. J. Med. 382, 545–553 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Blimark, C. et al. Multiple myeloma and infections: a population-based study on 9253 multiple myeloma patients. Haematologica 100, 107–113 (2015).

    PubMed  PubMed Central  Google Scholar 

  121. Teh, B. W. et al. Risks, severity and timing of infections in patients with multiple myeloma: a longitudinal cohort study in the era of immunomodulatory drug therapy. Br. J. Haematol. 171, 100–108 (2015).

    CAS  PubMed  Google Scholar 

  122. Mikkilineni, L. et al. Infectious complications associated with CAR T-cell therapy [abstract]. Blood 134 (Suppl. 1), 4449 (2019).

    Google Scholar 

  123. Syed, T. I. S. et al. Infections associated with CAR T therapy for treatment of hematological malignancies [abstract]. Blood 134 (Suppl. 1), 4442 (2019).

    Google Scholar 

  124. Luo, H. et al. Inflammatory signatures for quick diagnosis of life-threatening infection during the CAR T-cell therapy. J. Immunother. Cancer 7, 271 (2019).

    PubMed  PubMed Central  Google Scholar 

  125. Park, J. H. et al. Impact of the conditioning chemotherapy on outcomes in adoptive T cell therapy: results from a phase I clinical trial of autologous CD19-targeted T cells for patients with relapsed CLL [abstract]. Blood 120, 1797 (2012).

    Google Scholar 

  126. Wang, X. et al. Lenalidomide enhances the function of CS1 chimeric antigen receptor-redirected T cells against multiple myeloma. Clin. Cancer Res. 24, 106–119 (2018).

    CAS  PubMed  Google Scholar 

  127. Wang, M. et al. Response to anti-BCMA CAR T cell therapy correlates with T cell exhaustion and activation status in T cells at baseline in myeloma [abstract]. Blood 134 (Suppl. 1), 1909 (2019).

    Google Scholar 

  128. Sidana, S. et al. Patient experience of chimeric antigen receptor (CAR)-T cell therapy vs. stem cell transplant: longitudinal patient reported adverse events, cognition and quality of life [abstract]. Blood 134 (Suppl. 1), 794 (2019).

    Google Scholar 

  129. Costello, C. L. et al. Phase 2 study of the response and safety of P-BCMA-101 CAR-T cells in patients with relapsed/refractory (r/r) multiple myeloma (MM) (PRIME) [abstract]. Blood 134 (Suppl. 1), 3184 (2019).

    Google Scholar 

  130. Mathur, R. et al. B-cell maturation antigen (BCMA)-specific, CentyrinTM-based, PiggyBacTM-transposed CAR-T memory stem cells are effective against p53-/- and patient-derived multiple myeloma tumors [abstract]. Blood 130 (Suppl. 1), 3068 (2017).

    Google Scholar 

  131. Cohen, A. D. et al. Safety and efficacy of B-cell maturation antigen (BCMA)-specific chimeric antigen receptor T cells (CART-BCMA) with cyclophosphamide conditioning for refractory multiple myeloma (MM) [abstract]. Blood 130 (Suppl. 1), 505 (2017).

    Google Scholar 

  132. Li, C. et al. Efficacy and safety of fully human BCMA targeting CAR T cell therapy in relapsed/refractory multiple myeloma [abstract]. Blood 134 (Suppl. 1), 929 (2019).

    Google Scholar 

  133. Fu, W. Sr et al. Efficacy and safety of CAR-T therapy with safety switch targeting BCMA for patients with relapsed/refractory multiple myeloma in a phase 1 clinical study [abstract]. Blood 134 (Suppl. 1), 3154 (2019).

    Google Scholar 

  134. Liu, Y. et al. Durable remission achieved from BCMA-directed car-T therapy against relapsed or refractory multiple myeloma [abstract]. Blood 132 (Suppl. 1), 956 (2018).

    Google Scholar 

  135. Liu, Y. et al. Remission observed from a phase 1 clinical study of CAR-T therapy with safety switch targeting BCMA for patients with relapsed/refractory multiple myeloma [abstract]. J. Clin. Oncol. 36 (Suppl. 15), 8020 (2018).

    Google Scholar 

  136. Li, C. et al. T cells expressing anti B-cell maturation antigen chimeric antigen receptors for plasma cell malignancies [abstract]. Blood 132 (Suppl. 1), 1013 (2018).

    Google Scholar 

  137. Jie, J. et al. Phase 1 trial of the safety and efficacy of fully human anti-BCMA CAR T cells in relapsed/refractory multiple myeloma [abstract]. Blood 134 (Suppl. 1), 4435 (2019).

    Google Scholar 

  138. Popat, R. et al. Phase 1 first-in-human study of AUTO2, the first chimeric antigen receptor (CAR) T cell targeting APRIL for patients with relapsed/refractory multiple myeloma (RRMM) [abstract]. Blood 134 (Suppl. 1), 3112 (2019).

    Google Scholar 

  139. Yan, L. et al. Sequential CD19- and BCMA-specific chimeric antigen receptor T cell treatment for RRMM: report from a single center study [abstract]. Blood 134 (Suppl. 1), 578 (2019).

    Google Scholar 

  140. Li, C. et al. Improved efficacy and safety of a dual-target CAR-T cell therapy targeting BCMA and CD38 for relapsed/refractory multiple myeloma from a phase I study. Eur. J. Immunol. 49, 1723–1724 (2019).

    Google Scholar 

  141. Li, C. et al. A bispecific CAR-T cell therapy targeting BCMA and CD38 for relapsed/refractory multiple myeloma: updated results from a phase 1 dose-climbing trial [abstract]. Blood 134 (Suppl. 1), 930 (2019).

    Google Scholar 

  142. Ramos, C. A. et al. Clinical responses with T lymphocytes targeting malignancy-associated κ light chains. J. Clin. Invest. 126, 2588–2596 (2016).

    PubMed  PubMed Central  Google Scholar 

  143. Salem, D. A. et al. Quantification of B-cell maturation antigen, a target for novel chimeric antigen receptor T-cell therapy in myeloma. Leuk. Res. 71, 106–111 (2018).

    CAS  PubMed  Google Scholar 

  144. Baumeister, S. H. et al. Phase I trial of autologous CAR T cells targeting NKG2D ligands in patients with AML/MDS and multiple myeloma. Cancer Immunol. Res. 7, 100–112 (2019).

    CAS  PubMed  Google Scholar 

  145. Laabi, Y. et al. The BCMA gene, preferentially expressed during B lymphoid maturation, is bidirectionally transcribed. Nucleic Acids Res. 22, 1147–1154 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Coquery, C. M. & Erickson, L. D. Regulatory roles of the tumor necrosis factor receptor BCMA. Crit. Rev. Immunol. 32, 287–305 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Tai, Y.-T. & Anderson, K. C. Targeting B-cell maturation antigen in multiple myeloma. Immunotherapy 7, 1187–1199 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Sanchez, E. et al. The clinical significance of B-cell maturation antigen as a therapeutic target and biomarker. Expert Rev. Mol. Diagn. 18, 319–329 (2018).

    CAS  PubMed  Google Scholar 

  149. Xu, S. & Lam, K. P. B-cell maturation protein, which binds the tumor necrosis factor family members BAFF and APRIL, is dispensable for humoral immune responses. Mol. Cell Biol. 21, 4067–4074 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Avery, D. T. et al. BAFF selectively enhances the survival of plasmablasts generated from human memory B cells. J. Clin. Invest 112, 286–297 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Darce, J. R., Arendt, B. K., Chang, S. K. & Jelinek, D. F. Divergent effects of BAFF on human memory B cell differentiation into Ig-secreting cells. J. Immunol. 178, 5612–5622 (2007).

    CAS  PubMed  Google Scholar 

  152. Darce, J. R., Arendt, B. K., Wu, X. & Jelinek, D. F. Regulated expression of BAFF-binding receptors during human B cell differentiation. J. Immunol. 179, 7276–7286 (2007).

    CAS  PubMed  Google Scholar 

  153. Shah, N., Chari, A., Scott, E., Mezzi, K. & Usmani, S. Z. B-cell maturation antigen (BCMA) in multiple myeloma: rationale for targeting and current therapeutic approaches. Leukemia 34, 985–1005 (2020).

    PubMed  PubMed Central  Google Scholar 

  154. Moreaux, J. et al. BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood 103, 3148–3157 (2004).

    CAS  PubMed  Google Scholar 

  155. Cho, S.-F., Anderson, K. C., Tai, Y.-T. & Targeting, B. Cell maturation antigen (BCMA) in multiple myeloma: potential uses of BCMA-based immunotherapy. Front. Immunol. 9, 1821 (2018).

    PubMed  PubMed Central  Google Scholar 

  156. Laurent, S. A. et al. γ-Secretase directly sheds the survival receptor BCMA from plasma cells. Nat. Commun. 6, 7333 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Lee, L. et al. Evaluation of B cell maturation antigen as a target for antibody drug conjugate mediated cytotoxicity in multiple myeloma. Br. J. Haematol. 174, 911–922 (2016).

    CAS  PubMed  Google Scholar 

  158. Yong, K. L. et al. Evaluation of BCMA as a therapeutic target in multiple myeloma using an antibody-drug conjugate [abstract]. Blood 122 (21), 4447 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors made a substantial contribution to all aspects of the preparation of the manuscript.

Corresponding author

Correspondence to Lekha Mikkilineni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikkilineni, L., Kochenderfer, J.N. CAR T cell therapies for patients with multiple myeloma. Nat Rev Clin Oncol 18, 71–84 (2021). https://doi.org/10.1038/s41571-020-0427-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-020-0427-6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer