Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic developments in pancreatic cancer: current and future perspectives

Abstract

The overall 5-year survival for pancreatic cancer has changed little over the past few decades, and pancreatic cancer is predicted to be the second leading cause of cancer-related mortality in the next decade in Western countries. The past few years, however, have seen improvements in first-line and second-line palliative therapies and considerable progress in increasing survival with adjuvant treatment. The use of biomarkers to help define treatment and the potential of neoadjuvant therapies also offer opportunities to improve outcomes. This Review brings together information on achievements to date, what is working currently and where successes are likely to be achieved in the future. Furthermore, we address the questions of how we should approach the development of pancreatic cancer treatments, including those for patients with metastatic, locally advanced and borderline resectable pancreatic cancer, as well as for patients with resected tumours. In addition to embracing newer strategies comprising genomics, stromal therapies and immunotherapies, conventional approaches using chemotherapy and radiotherapy still offer considerable prospects for greater traction and synergy with evolving concepts.

Key points

  • Pancreatic cancer is currently the fourth leading cause of cancer-associated mortality and is projected to be the second leading cause within the next decade in Western countries.

  • For resectable tumours, surgery followed by adjuvant chemotherapy (gemcitabine plus capecitabine) is the standard of care; median survival in these patients is 26 months, with a 5-year survival of 30%.

  • For borderline resectable and locally advanced, unresectable tumours, neoadjuvant protocols are utilized, with a shift towards chemotherapy rather than radiochemotherapy, although good evidence from randomized controlled trials is lacking.

  • In the metastatic setting, FOLFIRINOX and nab-paclitaxel–gemcitabine are standard treatment options in patients with good performance status; both combinations have shown a survival advantage over previously standard gemcitabine monotherapy.

  • Second-line therapies, notably nanoliposomal irinotecan plus 5-fluorouracil–folinic acid, might prolong survival after first-line gemcitabine failure.

  • Pathway-specific targeted therapies have failed to provide clinically relevant benefits; therapies targeting the stroma as well as immunotherapies hold promise for the future but are currently not standard of care.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Suggested treatment algorithm for patients with pancreatic cancer.
Fig. 2: The microenvironment of pancreatic tumours.
Fig. 3: Tumour antigens and the role of regulatory and effector T cells in pancreatic cancer.
Fig. 4: Macrophages in the pancreatic tumour microenvironment.
Fig. 5: Drugs to modulate immune function in pancreatic cancer.

Similar content being viewed by others

References

  1. Rahib, L. et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 74, 2913–2921 (2014).

    Article  PubMed  CAS  Google Scholar 

  2. Ferlay, J. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359–E386 (2015).

    Article  PubMed  CAS  Google Scholar 

  3. Kleeff, J. et al. Pancreatic cancer. Nat. Rev. Dis. Primers 2, 16022 (2016).

    Article  PubMed  Google Scholar 

  4. Hartwig, W., Werner, J., Jager, D., Debus, J. & Buchler, M. W. Improvement of surgical results for pancreatic cancer. Lancet Oncol. 14, e476–e485 (2013).

    Article  PubMed  Google Scholar 

  5. Kalser, M. H. & Ellenberg, S. S. Pancreatic cancer. adjuvant combined radiation and chemotherapy following curative resection. Arch. Surg. 120, 899–903 (1985).

    Article  PubMed  CAS  Google Scholar 

  6. Klinkenbijl, J. H. et al. Adjuvant radiotherapy and 5-fluorouracil after curative resection of cancer of the pancreas and periampullary region: phase III trial of the EORTC gastrointestinal tract cancer cooperative group. Ann. Surg. 230, 776–782; discussion 782–784 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Neoptolemos, J. P. et al. Adjuvant chemoradiotherapy and chemotherapy in resectable pancreatic cancer: a randomised controlled trial. Lancet 358, 1576–1585 (2001).

    Article  PubMed  CAS  Google Scholar 

  8. Neoptolemos, J. P. et al. A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N. Engl. J. Med. 350, 1200–1210 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. Regine, W. F. et al. Fluorouracil versus gemcitabine chemotherapy before and after fluorouracil-based chemoradiation following resection of pancreatic adenocarcinoma: a randomized controlled trial. JAMA 299, 1019–1026 (2008).

    Article  PubMed  CAS  Google Scholar 

  10. Oettle, H. et al. Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: the CONKO-001 randomized trial. JAMA 310, 1473–1481 (2013).

    Article  PubMed  CAS  Google Scholar 

  11. Oettle, H. et al. Adjuvant chemotherapy with gemcitabine versus observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial. JAMA 297, 267–277 (2007).

    Article  PubMed  CAS  Google Scholar 

  12. Neoptolemos, J. P. et al. Adjuvant chemotherapy with fluorouracil plus folinic acid versus gemcitabine following pancreatic cancer resection: a randomized controlled trial. JAMA 304, 1073–1081 (2010).

    Article  PubMed  CAS  Google Scholar 

  13. Greenhalf, W. et al. Pancreatic cancer hENT1 expression and survival from gemcitabine in patients from the ESPAC-3 trial. J. Natl Cancer Inst. 106, djt347 (2014).

    Article  PubMed  CAS  Google Scholar 

  14. Serdjebi, C., Milano, G. & Ciccolini, J. Role of cytidine deaminase in toxicity and efficacy of nucleosidic analogs. Expert Opin. Drug Metab. Toxicol. 11, 665–672 (2015).

    Article  PubMed  CAS  Google Scholar 

  15. Dean, L. in Medical Genetics Summaries (ed. Pratt, V. et al.) (National Center for Biotechnology Information, Bethesda, 2012).

  16. Valle, J. W. et al. Optimal duration and timing of adjuvant chemotherapy after definitive surgery for ductal adenocarcinoma of the pancreas: ongoing lessons from the ESPAC-3 study. J. Clin. Oncol. 32, 504–512 (2014).

    Article  PubMed  Google Scholar 

  17. Sinn, M. et al. CONKO-005: adjuvant chemotherapy with gemcitabine plus erlotinib versus gemcitabine alone in patients after r0 resection of pancreatic cancer: a multicenter randomized phase iii trial. J. Clin. Oncol. 35, 3330–3337 (2017).

    Article  PubMed  Google Scholar 

  18. Uesaka, K. et al. Adjuvant chemotherapy of S-1 versus gemcitabine for resected pancreatic cancer: a phase 3, open-label, randomised, non-inferiority trial (JASPAC 01). Lancet 388, 248–257 (2016).

    Article  PubMed  CAS  Google Scholar 

  19. Neoptolemos, J. P. et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): a multicentre, open-label, randomised, phase 3 trial. Lancet 389, 1011–1024 (2017).

    Article  PubMed  CAS  Google Scholar 

  20. Cunningham, D. et al. Phase III randomized comparison of gemcitabine versus gemcitabine plus capecitabine in patients with advanced pancreatic cancer. J. Clin. Oncol. 27, 5513–5518 (2009).

    Article  PubMed  CAS  Google Scholar 

  21. Khorana, A. A. et al. Potentially curable pancreatic cancer: American Society of Clinical Oncology clinical practice guideline update. J. Clin. Oncol. 35, 2324–2328 (2017).

    Article  PubMed  Google Scholar 

  22. Bockhorn, M. et al. Borderline resectable pancreatic cancer: a consensus statement by the International Study Group of Pancreatic Surgery (ISGPS). Surgery 155, 977–988 (2014).

    Article  PubMed  Google Scholar 

  23. Gillen, S., Schuster, T., Meyer Zum Buschenfelde, C., Friess, H. & Kleeff, J. Preoperative/neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of response and resection percentages. PLoS Med. 7, e1000267 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Golcher, H. et al. Neoadjuvant chemoradiation therapy with gemcitabine/cisplatin and surgery versus immediate surgery in resectable pancreatic cancer: results of the first prospective randomized phase II trial. Strahlenther. Onkol. 191, 7–16 (2015).

    Article  PubMed  Google Scholar 

  25. Heinrich, S. et al. Adjuvant gemcitabine versus NEOadjuvant gemcitabine/oxaliplatin plus adjuvant gemcitabine in resectable pancreatic cancer: a randomized multicenter phase III study (NEOPAC study). BMC Cancer 11, 346 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Tachezy, M. et al. Sequential neoadjuvant chemoradiotherapy (CRT) followed by curative surgery versus primary surgery alone for resectable, non-metastasized pancreatic adenocarcinoma: NEOPA- a randomized multicenter phase III study (NCT01900327, DRKS00003893, ISRCTN82191749). BMC Cancer 14, 411 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Versteijne, E. et al. Preoperative radiochemotherapy versus immediate surgery for resectable and borderline resectable pancreatic cancer (PREOPANC trial): study protocol for a multicentre randomized controlled trial. Trials 17, 127 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. ISCRTN registry. ESPAC-5F: European Study group for Pancreatic Cancer - Trial 5F. BMC www.isrctn.com/ISRCTN89500674 (2014).

  29. Kwon, W. et al. in 51st Annual Meeting of The Pancreas Club S008 (Chicago, 2017).

  30. Hackert, T. et al. Locally advanced pancreatic cancer: neoadjuvant therapy with Folfirinox results in resectability in 60% of the patients. Ann. Surg. 264, 457–463 (2016).

    Article  PubMed  Google Scholar 

  31. Conroy, T. et al. Irinotecan plus oxaliplatin and leucovorin-modulated fluorouracil in advanced pancreatic cancer — a groupe tumeurs digestives of the federation nationale des centres de lutte contre le cancer study. J. Clin. Oncol. 23, 1228–1236 (2005).

    Article  PubMed  CAS  Google Scholar 

  32. Rombouts, S. J. et al. Systematic review of resection rates and clinical outcomes after folfirinox-based treatment in patients with locally advanced pancreatic cancer. Ann. Surg. Oncol. 23, 4352–4360 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ferrone, C. R. et al. Radiological and surgical implications of neoadjuvant treatment with FOLFIRINOX for locally advanced and borderline resectable pancreatic cancer. Ann. Surg. 261, 12–17 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nitsche, U. et al. Resectability after first-line folfirinox in initially unresectable locally advanced pancreatic cancer: a single-center experience. Ann. Surg. Oncol. 22(Suppl. 3), 1212–1220 (2015).

    Article  Google Scholar 

  35. Petrelli, F. et al. FOLFIRINOX-based neoadjuvant therapy in borderline resectable or unresectable pancreatic cancer: a meta-analytical review of published studies. Pancreas 44, 515–521 (2015).

    Article  PubMed  CAS  Google Scholar 

  36. Katz, M. H. et al. Response of borderline resectable pancreatic cancer to neoadjuvant therapy is not reflected by radiographic indicators. Cancer 118, 5749–5756 (2012).

    Article  PubMed  Google Scholar 

  37. Balaban, E. P., Mangu, P. B. & Yee, N. S. Locally advanced unresectable pancreatic cancer: American Society of Clinical Oncology clinical practice guideline summary. J. Oncol. Pract. 13, 265–269 (2017).

    Article  PubMed  Google Scholar 

  38. Hurt, C. N. et al. Long-term results and recurrence patterns from SCALOP: a phase II randomised trial of gemcitabine- or capecitabine-based chemoradiation for locally advanced pancreatic cancer. Br. J. Cancer 116, 1264–1270 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Linecker, M., Pfammatter, T., Kambakamba, P. & DeOliveira, M. L. Ablation strategies for locally advanced pancreatic cancer. Dig. Surg. 33, 351–359 (2016).

    Article  PubMed  Google Scholar 

  40. Paiella, S. et al. Local ablative strategies for ductal pancreatic cancer (radiofrequency ablation, irreversible electroporation): a review. Gastroenterol. Res. Pract. 2016, 4508376 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rombouts, S. J. et al. Systematic review of innovative ablative therapies for the treatment of locally advanced pancreatic cancer. Br. J. Surg. 102, 182–193 (2015).

    Article  PubMed  CAS  Google Scholar 

  42. Sofuni, A. et al. Safety trial of high-intensity focused ultrasound therapy for pancreatic cancer. World J. Gastroenterol. 20, 9570–9577 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sung, H. Y. et al. Long-term outcome of high-intensity focused ultrasound in advanced pancreatic cancer. Pancreas 40, 1080–1086 (2011).

    Article  PubMed  Google Scholar 

  44. Burris, H. A. 3rd et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J. Clin. Oncol. 15, 2403–2413 (1997).

    Article  PubMed  CAS  Google Scholar 

  45. Conroy, T. et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med. 364, 1817–1825 (2011).

    Article  PubMed  CAS  Google Scholar 

  46. Von Hoff, D. D. et al. Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J. Clin. Oncol. 29, 4548–4554 (2011).

    Article  CAS  Google Scholar 

  47. Neesse, A., Michl, P. & Tuveson, D. A. and Ellenrieder, V. nab-Paclitaxel: novel clinical and experimental evidence in pancreatic cancer. Z. Gastroenterol. 52, 360–366 (2014).

    Article  PubMed  CAS  Google Scholar 

  48. Von Hoff, D. D. et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med. 369, 1691–1703 (2013).

    Article  CAS  Google Scholar 

  49. Goldstein, D. et al. nab-Paclitaxel plus gemcitabine for metastatic pancreatic cancer: long-term survival from a phase III trial. J. Natl Cancer Inst. 107, dju413 (2015).

    Article  PubMed  CAS  Google Scholar 

  50. Sohal, D. P. et al. Metastatic pancreatic cancer: American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol. 34, 2784–2796 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hammel, P. et al. Effect of chemoradiotherapy versus chemotherapy on survival in patients with locally advanced pancreatic cancer controlled after 4 months of gemcitabine with or without erlotinib: the lap07 randomized clinical trial. JAMA 315, 1844–1853 (2016).

    Article  PubMed  CAS  Google Scholar 

  52. Nagrial, A. M. et al. Second-line treatment in inoperable pancreatic adenocarcinoma: a systematic review and synthesis of all clinical trials. Crit. Rev. Oncol. Hematol. 96, 483–497 (2015).

    Article  PubMed  Google Scholar 

  53. Pelzer, U. et al. Best supportive care (BSC) versus oxaliplatin, folinic acid and 5-fluorouracil (OFF) plus BSC in patients for second-line advanced pancreatic cancer: a phase III-study from the German CONKO-study group. Eur. J. Cancer 47, 1676–1681 (2011).

    Article  PubMed  CAS  Google Scholar 

  54. Oettle, H. et al. Second-line oxaliplatin, folinic acid, and fluorouracil versus folinic acid and fluorouracil alone for gemcitabine-refractory pancreatic cancer: outcomes from the CONKO-003 trial. J. Clin. Oncol. 32, 2423–2429 (2014).

    Article  PubMed  CAS  Google Scholar 

  55. Gill, S. et al. PANCREOX: A randomized phase III study of fluorouracil/leucovorin with or without oxaliplatin for second-line advanced pancreatic cancer in patients who have received gemcitabine-based chemotherapy. J. Clin. Oncol. 34, 3914–3920 (2016).

    Article  PubMed  CAS  Google Scholar 

  56. Wang-Gillam, A. et al. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. Lancet 387, 545–557 (2016).

    Article  PubMed  CAS  Google Scholar 

  57. Portal, A. et al. Nab-paclitaxel plus gemcitabine for metastatic pancreatic adenocarcinoma after Folfirinox failure: an AGEO prospective multicentre cohort. Br. J. Cancer 113, 989–995 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Tempero, M. A. et al. Pancreatic adenocarcinoma, version 2.2017, nccn clinical practice guidelines in oncology. J. Natl Compr. Canc. Netw. 15, 1028–1061 (2017).

    Article  PubMed  Google Scholar 

  59. Kindler, H. L. et al. Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303). J. Clin. Oncol. 28, 3617–3622 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Rougier, P. et al. Randomised, placebo-controlled, double-blind, parallel-group phase III study evaluating aflibercept in patients receiving first-line treatment with gemcitabine for metastatic pancreatic cancer. Eur. J. Cancer 49, 2633–2642 (2013).

    Article  PubMed  CAS  Google Scholar 

  61. Kindler, H. L. et al. Axitinib plus gemcitabine versus placebo plus gemcitabine in patients with advanced pancreatic adenocarcinoma: a double-blind randomised phase 3 study. Lancet Oncol. 12, 256–262 (2011).

    Article  PubMed  CAS  Google Scholar 

  62. Kindler, H. L. et al. Gemcitabine plus sorafenib in patients with advanced pancreatic cancer: a phase II trial of the University of Chicago Phase II Consortium. Invest. New Drugs 30, 382–386 (2012).

    Article  PubMed  CAS  Google Scholar 

  63. Michl, P. & Gress, T. M. Current concepts and novel targets in advanced pancreatic cancer. Gut 62, 317–326 (2013).

    Article  PubMed  CAS  Google Scholar 

  64. O’Reilly, E. M. et al. A Cancer and Leukemia Group B phase II study of sunitinib malate in patients with previously treated metastatic pancreatic adenocarcinoma (CALGB 80603). Oncologist 15, 1310–1319 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Fuchs, C. S. et al. A phase 3 randomized, double-blind, placebo-controlled trial of ganitumab or placebo in combination with gemcitabine as first-line therapy for metastatic adenocarcinoma of the pancreas: the GAMMA trial. Ann. Oncol. 26, 921–927 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Philip, P. A. et al. Dual blockade of epidermal growth factor receptor and insulin-like growth factor receptor-1 signaling in metastatic pancreatic cancer: phase Ib and randomized phase II trial of gemcitabine, erlotinib, and cixutumumab versus gemcitabine plus erlotinib (SWOG S0727). Cancer 120, 2980–2985 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Deplanque, G. et al. A randomized, placebo-controlled phase III trial of masitinib plus gemcitabine in the treatment of advanced pancreatic cancer. Ann. Oncol. 26, 1194–1200 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. O’Neil, B. H. et al. A phase II/III randomized study to compare the efficacy and safety of rigosertib plus gemcitabine versus gemcitabine alone in patients with previously untreated metastatic pancreatic cancer. Ann. Oncol. 26, 1923–1929 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ottaiano, A. et al. Gemcitabine mono-therapy versus gemcitabine plus targeted therapy in advanced pancreatic cancer: a meta-analysis of randomized phase III trials. Acta Oncol. 56, 377–383 (2017).

    Article  PubMed  CAS  Google Scholar 

  70. Moore, M. J. et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol. 25, 1960–1966 (2007).

    Article  PubMed  CAS  Google Scholar 

  71. Potthoff, K. et al. Interdisciplinary management of EGFR-inhibitor-induced skin reactions: a German expert opinion. Ann. Oncol. 22, 524–535 (2011).

    Article  PubMed  CAS  Google Scholar 

  72. Wacker, B. et al. Correlation between development of rash and efficacy in patients treated with the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib in two large phase III studies. Clin. Cancer Res. 13, 3913–3921 (2007).

    Article  PubMed  CAS  Google Scholar 

  73. Kleeff, J. et al. Pancreatic cancer microenvironment. Int. J. Cancer 121, 699–705 (2007).

    Article  PubMed  CAS  Google Scholar 

  74. Hidalgo, M. et al. SPARC expression did not predict efficacy of nab-paclitaxel plus gemcitabine or gemcitabine alone for metastatic pancreatic cancer in an exploratory analysis of the phase III MPACT Trial. Clin. Cancer Res. 21, 4811–4818 (2015).

    Article  PubMed  CAS  Google Scholar 

  75. Provenzano, P. P. et al. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21, 418–429 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Jacobetz, M. A. et al. Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut 62, 112–120 (2013).

    Article  PubMed  CAS  Google Scholar 

  77. Hingorani, S. R. et al. High response rate and PFS with PEGPH20 added to nab-paclitaxel/gemcitabine in stage IV previously untreated pancreatic cancer patients with high-HA tumors: Interim results of a randomized phase II study. J. Clin. Oncol. 33, 4006 (2015).

    Google Scholar 

  78. Erkan, M. et al. StellaTUM: current consensus and discussion on pancreatic stellate cell research. Gut 61, 172–178 (2012).

    Article  PubMed  CAS  Google Scholar 

  79. Sherman, M. H. et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell 159, 80–93 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Roberts, K. J., Kershner, A. M. & Beachy, P. A. The stromal niche for epithelial stem cells: a template for regeneration and a brake on malignancy. Cancer Cell 32, 404–410 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  81. Olive, K. P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Rhim, A. D. et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25, 735–747 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Ozdemir, B. C. et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25, 719–734 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Van Cutsem, E. et al. MAESTRO: a randomized, double-blind phase III study of evofosfamide (Evo) in combination with gemcitabine (Gem) in previously untreated patients (pts) with metastatic or locally advanced unresectable pancreatic ductal adenocarcinoma (PDAC). J. Clin. Oncol. 34, 4007 (2016).

    Article  Google Scholar 

  85. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  PubMed  CAS  Google Scholar 

  86. Farren, M. R. et al. Systemic immune activity predicts overall survival in treatment naive patients with metastatic pancreatic cancer. Clin. Cancer Res. 22, 2565–2574 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Silva, I. P. & Long, G. V. Systemic therapy in advanced melanoma: integrating targeted therapy and immunotherapy into clinical practice. Curr. Opin. Oncol. 29, 484–492 (2017).

    Article  PubMed  CAS  Google Scholar 

  88. Tang, H., Qiao, J. & Fu, Y. X. Immunotherapy and tumor microenvironment. Cancer Lett. 370, 85–90 (2016).

    Article  PubMed  CAS  Google Scholar 

  89. Limagne, E. et al. Accumulation of MDSC and Th17 cells in patients with metastatic colorectal cancer predict the efficacy of a FOLFOX-bevacizumab drug treatment regimen. Cancer Res. 76, 5241–5252 (2016).

    Article  PubMed  CAS  Google Scholar 

  90. Lepique, A. P., Daghastanli, K. R., Cuccovia, I. M. & Villa, L. L. HPV16 tumor associated macrophages suppress antitumor T cell responses. Clin. Cancer Res. 15, 4391–4400 (2009).

    Article  PubMed  CAS  Google Scholar 

  91. Carmi, Y. et al. Allogeneic IgG combined with dendritic cell stimuli induce antitumour T-cell immunity. Nature 521, 99–104 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Mills, C. D., Lenz, L. L. & Harris, R. A. A. Breakthrough: macrophage-directed cancer immunotherapy. Cancer Res. 76, 513–516 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Feig, C. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl Acad. Sci. USA 110, 20212–20217 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Spadi, R. et al. Current therapeutic strategies for advanced pancreatic cancer: a review for clinicians. World J. Clin. Oncol. 7, 27–43 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Melero, I. et al. Therapeutic vaccines for cancer: an overview of clinical trials. Nat. Rev. Clin. Oncol. 11, 509–524 (2014).

    Article  PubMed  CAS  Google Scholar 

  96. Middleton, G. et al. Gemcitabine and capecitabine with or without telomerase peptide vaccine GV1001 in patients with locally advanced or metastatic pancreatic cancer (TeloVac): an open-label, randomised, phase 3 trial. Lancet Oncol. 15, 829–840 (2014).

    Article  PubMed  CAS  Google Scholar 

  97. Palmer, D. H. et al. A prospective, single-arm, phase I/II trial of RAS peptide vaccine TG01/GM-CSF and gemcitabine as adjuvant therapy for patients with resected pancreatic adenocarcinoma [abstract]. J. Clin. Oncol. 35, 4119 (2015).

    Article  Google Scholar 

  98. Dueland, S. et al. 669PTG01/GM-CSF and adjuvant gemcitabine in patients with resected RAS-mutant adenocarcinoma of the pancreas. Ann. Oncol. https://doi.org/10.1093/annonc/mdx369.053 (2017).

  99. Meng, Q. et al. Expansion of tumor-reactive T cells from patients with pancreatic cancer. J. Immunother. 39, 81–89 (2016).

    Article  PubMed  CAS  Google Scholar 

  100. Byrne, K. T., Vonderheide, R. H., Jaffee, E. M. & Armstrong, T. D. Special conference on tumor immunology and immunotherapy: a new chapter. Cancer Immunol. Res. https://doi.org/10.1158/2326-6066.CIR-15-0106 (2015).

  101. Starck, L., Popp, K., Pircher, H. & Uckert, W. Immunotherapy with TCR-redirected T cells: comparison of TCR-transduced and TCR-engineered hematopoietic stem cell-derived T cells. J. Immunol. 192, 206–213 (2014).

    Article  PubMed  CAS  Google Scholar 

  102. Morgan, R. A. et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J. Immunother. 36, 133–151 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Maus, M. V. & June, C. H. Making better chimeric antigen receptors for adoptive t-cell therapy. Clin. Cancer Res. 22, 1875–1884 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Sathyanarayanan, V. & Neelapu, S. S. Cancer immunotherapy: strategies for personalization and combinatorial approaches. Mol. Oncol. 9, 2043–2053 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Alrifai, D., Sarker, D. & Maher, J. Prospects for adoptive immunotherapy of pancreatic cancer using chimeric antigen receptor-engineered T-cells. Immunopharmacol. Immunotoxicol. 38, 50–60 (2016).

    Article  PubMed  CAS  Google Scholar 

  106. David, J. M., Dominguez, C., Hamilton, D. H. & Palena, C. The IL-8/IL-8R axis: a double agent in tumor immune resistance. Vaccines 4, E22 (2016).

    Article  PubMed  CAS  Google Scholar 

  107. Weed, D. T. et al. Tadalafil reduces myeloid-derived suppressor cells and regulatory T cells and promotes tumor immunity in patients with head and neck squamous cell carcinoma. Clin. Cancer Res. 21, 39–48 (2015).

    Article  PubMed  CAS  Google Scholar 

  108. Wesolowski, R., Markowitz, J. & Carson, W. E. 3rd. Myeloid derived suppressor cells - a new therapeutic target in the treatment of cancer. J. Immunother. Cancer 1, 10 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Noman, M. Z. et al. Tumor-promoting effects of myeloid-derived suppressor cells are potentiated by hypoxia-induced expression of miR-210. Cancer Res. 75, 3771–3787 (2015).

    Article  PubMed  CAS  Google Scholar 

  110. Bigelow, E. et al. Immunohistochemical staining of B7-H1 (PD-L1) on paraffin-embedded slides of pancreatic adenocarcinoma tissue. J. Vis. Exp. 71, 4059 (2013).

    Google Scholar 

  111. Noy, R. & Pollard, J. W. Tumor-associated macrophages: from mechanisms to therapy. Immunity 41, 49–61 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Wolchok, J. D. & Saenger, Y. The mechanism of anti-CTLA-4 activity and the negative regulation of T-cell activation. Oncologist 13 (Suppl. 4), 2–9 (2008).

    Article  PubMed  CAS  Google Scholar 

  113. Yeung, A. W., Terentis, A. C., King, N. J. & Thomas, S. R. Role of indoleamine 2,3-dioxygenase in health and disease. Clin. Sci. 129, 601–672 (2015).

    Article  PubMed  CAS  Google Scholar 

  114. Bessede, A. et al. Aryl hydrocarbon receptor control of a disease tolerance defence pathway. Nature 511, 184–190 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Wolchok, J. D. et al. Development of ipilimumab: a novel immunotherapeutic approach for the treatment of advanced melanoma. Ann. NY Acad. Sci. 1291, 1–13 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Zhai, L. et al. Molecular pathways: targeting ido1 and other tryptophan dioxygenases for cancer immunotherapy. Clin. Cancer Res. 21, 5427–5433 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Voo, K. S. et al. Antibodies targeting human OX40 expand effector T cells and block inducible and natural regulatory T cell function. J. Immunol. 191, 3641–3650 (2013).

    Article  PubMed  CAS  Google Scholar 

  118. Bauer, C. et al. Prevailing over T cell exhaustion: new developments in the immunotherapy of pancreatic cancer. Cancer Lett. 381, 259–268 (2016).

    Article  PubMed  CAS  Google Scholar 

  119. Beatty, G. L. et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331, 1612–1616 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Ryter, S. W. & Choi, A. M. Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation. Transl Res. 167, 7–34 (2016).

    Article  PubMed  CAS  Google Scholar 

  121. Manrique, S. Z. et al. Definitive activation of endogenous antitumor immunity by repetitive cycles of cyclophosphamide with interspersed Toll-like receptor agonists. Oncotarget 7, 42919–42942 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Vaz, J. & Andersson, R. Intervention on toll-like receptors in pancreatic cancer. World J. Gastroenterol. 20, 5808–5817 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Fearon, D. T. The carcinoma-associated fibroblast expressing fibroblast activation protein and escape from immune surveillance. Cancer Immunol. Res. 2, 187–193 (2014).

    Article  PubMed  CAS  Google Scholar 

  124. Overman, M. J. et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet. Oncol. 18, 1182–1191 (2017).

    Article  PubMed  CAS  Google Scholar 

  125. Hofmann, L. et al. Cutaneous, gastrointestinal, hepatic, endocrine, and renal side-effects of anti-PD-1 therapy. Eur. J. Cancer 60, 190–209 (2016).

    Article  PubMed  CAS  Google Scholar 

  126. Brunet, L. R., Hagemann, T., Andrew, G., Mudan, S. & Marabelle, A. Have lessons from past failures brought us closer to the success of immunotherapy in metastatic pancreatic cancer? Oncoimmunology 5, e1112942 (2016).

    Article  PubMed  CAS  Google Scholar 

  127. Mackall, C. L. et al. Distinctions between CD8 + and CD4 + T-cell regenerative pathways result in prolonged T-cell subset imbalance after intensive chemotherapy. Blood 89, 3700–3707 (1997).

    PubMed  CAS  Google Scholar 

  128. Schiavoni, G. et al. Cyclophosphamide induces type I interferon and augments the number of CD44(hi) T lymphocytes in mice: implications for strategies of chemoimmunotherapy of cancer. Blood 95, 2024–2030 (2000).

    PubMed  CAS  Google Scholar 

  129. Middleton, G. et al. Immunobiological effects of gemcitabine and capecitabine combination chemotherapy in advanced pancreatic ductal adenocarcinoma. Br. J. Cancer 114, 510–518 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Prasanna, A., Ahmed, M. M., Mohiuddin, M. & Coleman, C. N. Exploiting sensitization windows of opportunity in hyper and hypo-fractionated radiation therapy. J. Thorac. Dis. 6, 287–302 (2014).

    PubMed  PubMed Central  Google Scholar 

  131. Biankin, A. V., Piantadosi, S. & Hollingsworth, S. J. Patient-centric trials for therapeutic development in precision oncology. Nature 526, 361–370 (2015).

    Article  PubMed  CAS  Google Scholar 

  132. Boj, S. F. et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 160, 324–338 (2015).

    Article  PubMed  CAS  Google Scholar 

  133. Chantrill, L. A. et al. Precision medicine for advanced pancreas cancer: the individualized molecular pancreatic cancer therapy (IMPaCT) trial. Clin. Cancer Res. 21, 2029–2037 (2015).

    Article  PubMed  CAS  Google Scholar 

  134. Hurwitz, H. I. et al. Randomized, double-blind, phase II study of Ruxolitinib or placebo in combination with capecitabine in patients with metastatic pancreatic cancer for whom therapy with gemcitabine has failed. J. Clin. Oncol. 33, 4039–4047 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Waddell, N. et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 518, 495–501 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Bendell, J. et al. Phase I study of olaparib plus gemcitabine in patients with advanced solid tumours and comparison with gemcitabine alone in patients with locally advanced/metastatic pancreatic cancer. Ann. Oncol. 26, 804–811 (2015).

    Article  PubMed  CAS  Google Scholar 

  137. Kaufman, B. et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J. Clin. Oncol. 33, 244–250 (2015).

    Article  PubMed  CAS  Google Scholar 

  138. Witkiewicz, A. K. et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat. Commun. 6, 6744 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Bailey, P. et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531, 47–52 (2016).

    Article  PubMed  CAS  Google Scholar 

  140. Chung, V. M. et al. SWOG S1115: randomized phase ii trial of selumetinib (AZD6244; ARRY 142886) hydrogen sulfate (NSC-748727) and MK-2206 (NSC-749607) versus mFOLFOX in pretreated patients (Pts) with metastatic pancreatic cancer [abstract]. ASCO Meet. Abstr. 33, 4119 (2015).

    Google Scholar 

  141. Ge, F. et al. S-1 as monotherapy or in combination with leucovorin as second-line treatment in gemcitabine-refractory advanced pancreatic cancer: a randomized, open-label, multicenter, phase II study. Oncologist 19, 1133–1134 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Wu, Z. et al. Phase II study of lapatinib and capecitabine in second-line treatment for metastatic pancreatic cancer. Cancer Chemother. Pharmacol. 76, 1309–1314 (2015).

    Article  PubMed  CAS  Google Scholar 

  143. Dragovich, T. et al. Phase II trial of vatalanib in patients with advanced or metastatic pancreatic adenocarcinoma after first-line gemcitabine therapy (PCRT O4-001). Cancer Chemother. Pharmacol. 74, 379–387 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Soares, H. P. et al. A phase II study of capecitabine plus docetaxel in gemcitabine-pretreated metastatic pancreatic cancer patients: CapTere. Cancer Chemother. Pharmacol. 73, 839–845 (2014).

    Article  PubMed  CAS  Google Scholar 

  145. Saif, M. W. et al. First-in-human phase II trial of the botanical formulation PHY906 with capecitabine as second-line therapy in patients with advanced pancreatic cancer. Cancer Chemother. Pharmacol. 73, 373–380 (2014).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work of J.K. and J.P.N. is supported by the European Cooperation in Science and Technology action BM1204, “EUPancreas: An integrated European platform for pancreas cancer research: from basic science to clinical and public health interventions for a rare disease”.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to the Review.

Corresponding authors

Correspondence to John P. Neoptolemos or Jörg Kleeff.

Ethics declarations

Competing interests

J.P.N. reports grants from AstraZeneca, Cancer Research UK, Clovis Oncology and Ventana, Immunovia, KAEL & GemVax (Korea), Pharma Nord and Taiho Pharma (Japan); payment for lectures from Amgen and Mylan; paid consultancy from Astellas, Boehringer Ingelheim Pharma GmbH & Co KG, Erytech, KAEL & GemVax, Novartis Pharma AG, Redhill Biopharma and Tragovax; and educational travel grants from NuCana, all of which were not related to the submitted work. J.P.N. was a UK National Institute for Health Research (NIHR) senior investigator. D.H.P. reports grants from Cancer Research UK, the NIHR and NuCana and paid consultancy from NuCana. E.C. and W.G. report grants from Cancer Research UK, Immunova, the NIHR and the European Union. J.K. and P.M. declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Hand–foot syndrome

A condition that can occur after chemotherapy in which there is redness, swelling, numbness and/or skin peeling on the palms of the hands and the soles of the feet.

FOLFIRINOX

A therapy combination including folinic acid, 5-fluoruracil, irinotecan and oxaliplatin.

Irreversible electroporation

(IRE). A nonthermal ablation technique that uses short (microsecond) pulses of high voltage electrical current to create permanent, lethal nanopores in the cell membrane.

Radiofrequency ablation

(RFA). An ablation technique that uses heat generated from medium frequency alternating current.

Stereotactic body radiation

(SBRT). A specialized type of external beam radiation therapy that uses focused radiation beams to precisely target a tumour that is well defined by detailed imaging scans.

High-intensity focused ultrasound

(HIFU). A procedure that uses an acoustic lens to concentrate multiple intersecting beams of ultrasound on a target.

Nanoliposomal irinotecan

An artificial, nanosized liposomal delivery system for irinotecan that is designed to keep irinotecan in circulation for longer than free irinotecan.

Cancer-associated fibroblasts

(CAFs). Fibroblasts within the tumour microenvironment that promote tumorigenic features by initiating the remodelling of extracellular matrix or by secreting cytokines.

T cell checkpoints

Molecules in the immune system that can either turn up (via co-stimulatory pathways) or turn down (via inhibitory pathways) immune responses

Regulatory T cells

(Treg cells). A subpopulation of T cells that modulate immune system function, maintain self-tolerance and prevent autoimmune disease.

Myeloid-derived suppressor cells

A heterogeneous group of immune cells of myeloid lineage (derived from bone marrow stem cells), they are strongly immunosuppressive rather than immunostimulatory.

Effector T cells

A subpopulation of T cells that have an important role in executing immune functions, including releasing T cell cytokines.

Antigen-presenting cells

(APCs). Cells that display antigens complexed with major histocompatibility complexes on their cell surfaces.

Suicide cassettes

Components of vector DNA consisting of a suicide gene and regulatory sequence to be expressed by a transfected cell, which cause the transfected cell to undergo apoptosis.

Kynurenine

A metabolite of tryptophan produced by indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO).

Neo-antigen

A new antigen expressed exclusively by tumour cells that is generated by the progressive mutational process that drives cancer evolution.

Abscopal effects

A phenomenon whereby local radiotherapy causes regression of not only the targeted tumour but also distant tumours.

Intensity-modulated radiation therapy

A high-precision conformal radiotherapy approach to deliver precise radiation doses to a malignant tumour or specific areas within the tumour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neoptolemos, J.P., Kleeff, J., Michl, P. et al. Therapeutic developments in pancreatic cancer: current and future perspectives. Nat Rev Gastroenterol Hepatol 15, 333–348 (2018). https://doi.org/10.1038/s41575-018-0005-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-018-0005-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing