Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease

Abstract

The environment, diet, microbiota and body’s metabolism shape complex biological processes in health and disease. However, our understanding of the molecular pathways involved in these processes is still limited. The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that integrates environmental, dietary, microbial and metabolic cues to control complex transcriptional programmes in a ligand-specific, cell-type-specific and context-specific manner. In this Review, we summarize our current knowledge of AHR and the transcriptional programmes it controls in the immune system. Finally, we discuss the role of AHR in autoimmune and neoplastic diseases of the central nervous system, with a special focus on the gut immune system, the gut–brain axis and the therapeutic potential of targeting AHR in neurological disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: AHR signalling.
Fig. 2: AHR in antigen-presenting cells and T cells.
Fig. 3: AHR in intestinal epithelial cells, intraepithelial lymphocytes and innate lymphoid cells.
Fig. 4: AHR in central nervous system-resident cells.
Fig. 5: AHR as a therapeutic target.

Similar content being viewed by others

References

  1. McIntosh, B. E., Hogenesch, J. B. & Bradfield, C. A. Mammalian Per-Arnt-Sim proteins in environmental adaptation. Annu. Rev. Physiol. 72, 625–645 (2010).

    CAS  PubMed  Google Scholar 

  2. Fukunaga, B. N., Probst, M. R., Reisz-Porszasz, S. & Hankinson, O. Identification of functional domains of the aryl hydrocarbon receptor. J. Biol. Chem. 270, 29270–29278 (1995).

    CAS  PubMed  Google Scholar 

  3. Antonsson, C., Whitelaw, M. L., McGuire, J., Gustafsson, J. A. & Poellinger, L. Distinct roles of the molecular chaperone hsp90 in modulating dioxin receptor function via the basic helix-loop-helix and PAS domains. Mol. Cell. Biol. 15, 756–765 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Stockinger, B., Di Meglio, P., Gialitakis, M. & Duarte, J. H. The aryl hydrocarbon receptor: multitasking in the immune system. Annu. Rev. Immunol. 32, 403–432 (2014).

    CAS  PubMed  Google Scholar 

  5. Kudo, I. et al. The regulation mechanisms of AhR by molecular chaperone complex. J. Biochem. 163, 223–232 (2018).

    CAS  PubMed  Google Scholar 

  6. Carver, L. A. & Bradfield, C. A. Ligand-dependent interaction of the aryl hydrocarbon receptor with a novel immunophilin homolog in vivo. J. Biol. Chem. 272, 11452–11456 (1997).

    CAS  PubMed  Google Scholar 

  7. Meyer, B. K. & Perdew, G. H. Characterization of the AhR-hsp90-XAP2 core complex and the role of the immunophilin-related protein XAP2 in AhR stabilization. Biochemistry 38, 8907–8917 (1999).

    CAS  PubMed  Google Scholar 

  8. Meyer, B. K., Pray-Grant, M. G., Vanden Heuvel, J. P. & Perdew, G. H. Hepatitis B virus X-associated protein 2 is a subunit of the unliganded aryl hydrocarbon receptor core complex and exhibits transcriptional enhancer activity. Mol. Cell. Biol. 18, 978–988 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Petrulis, J. R. & Perdew, G. H. The role of chaperone proteins in the aryl hydrocarbon receptor core complex. Chem. Biol. Interact. 141, 25–40 (2002).

    CAS  PubMed  Google Scholar 

  10. Petrulis, J. R., Kusnadi, A., Ramadoss, P., Hollingshead, B. & Perdew, G. H. The hsp90 co-chaperone XAP2 alters importin beta recognition of the bipartite nuclear localization signal of the Ah receptor and represses transcriptional activity. J. Biol. Chem. 278, 2677–2685 (2003).

    CAS  PubMed  Google Scholar 

  11. Ramadoss, P., Petrulis, J. R., Hollingshead, B. D., Kusnadi, A. & Perdew, G. H. Divergent roles of hepatitis B virus X-associated protein 2 (XAP2) in human versus mouse Ah receptor complexes. Biochemistry 43, 700–709 (2004).

    CAS  PubMed  Google Scholar 

  12. Pappas, B. et al. p23 protects the human aryl hydrocarbon receptor from degradation via a heat shock protein 90-independent mechanism. Biochem. Pharmacol. 152, 34–44 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kazlauskas, A., Poellinger, L. & Pongratz, I. Evidence that the co-chaperone p23 regulates ligand responsiveness of the dioxin (Aryl hydrocarbon) receptor. J. Biol. Chem. 274, 13519–13524 (1999).

    CAS  PubMed  Google Scholar 

  14. Enan, E. & Matsumura, F. Identification of c-Src as the integral component of the cytosolic Ah receptor complex, transducing the signal of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) through the protein phosphorylation pathway. Biochem. Pharmacol. 52, 1599–1612 (1996).

    CAS  PubMed  Google Scholar 

  15. Enan, E. & Matsumura, F. Evidence for a second pathway in the action mechanism of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Significance of Ah-receptor mediated activation of protein kinase under cell-free conditions. Biochem. Pharmacol. 49, 249–261 (1995).

    CAS  PubMed  Google Scholar 

  16. Hwang, S. J. et al. Indoxyl 3-sulfate stimulates Th17 differentiation enhancing phosphorylation of c-Src and STAT3 to worsen experimental autoimmune encephalomyelitis. Toxicol. Lett. 220, 109–117 (2013).

    CAS  PubMed  Google Scholar 

  17. Backlund, M. & Ingelman-Sundberg, M. Regulation of aryl hydrocarbon receptor signal transduction by protein tyrosine kinases. Cell Signal. 17, 39–48 (2005).

    CAS  PubMed  Google Scholar 

  18. Pongratz, I., Mason, G. G. & Poellinger, L. Dual roles of the 90-kDa heat shock protein hsp90 in modulating functional activities of the dioxin receptor. Evidence that the dioxin receptor functionally belongs to a subclass of nuclear receptors which require hsp90 both for ligand binding activity and repression of intrinsic DNA binding activity. J. Biol. Chem. 267, 13728–13734 (1992).

    CAS  PubMed  Google Scholar 

  19. Ikuta, T. et al. Nucleocytoplasmic shuttling of the aryl hydrocarbon receptor. J. Biochem. 127, 503–509 (2000).

    CAS  PubMed  Google Scholar 

  20. Ikuta, T., Kobayashi, Y. & Kawajiri, K. Phosphorylation of nuclear localization signal inhibits the ligand-dependent nuclear import of aryl hydrocarbon receptor. Biochem. Biophys. Res. Commun. 317, 545–550 (2004).

    CAS  PubMed  Google Scholar 

  21. Tsuji, N. et al. The activation mechanism of the aryl hydrocarbon receptor (AhR) by molecular chaperone HSP90. FEBS Open Bio 4, 796–803 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yao, E. F. & Denison, M. S. DNA sequence determinants for binding of transformed Ah receptor to a dioxin-responsive enhancer. Biochemistry 31, 5060–5067 (1992).

    CAS  PubMed  Google Scholar 

  23. Swanson, H. I., Tullis, K. & Denison, M. S. Binding of transformed Ah receptor complex to a dioxin responsive transcriptional enhancer: evidence for two distinct heteromeric DNA-binding forms. Biochemistry 32, 12841–12849 (1993).

    CAS  PubMed  Google Scholar 

  24. Sakurai, S., Shimizu, T. & Ohto, U. The crystal structure of the AhRR-ARNT heterodimer reveals the structural basis of the repression of AhR-mediated transcription. J. Biol. Chem. 292, 17609–17616 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Mascanfroni, I. D. et al. Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-alpha. Nat. Med. 21, 638–646 (2015). This study shows that AHR and HIF1α collaborate to integrate molecular cues from the cellular microenvironment to shape T cell polarization.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ohtake, F. et al. Modulation of oestrogen receptor signalling by association with the activated dioxin receptor. Nature 423, 545–550 (2003). This paper shows that AHR interacts with the oestrogen receptor to target non-XRE DNA elements.

    CAS  PubMed  Google Scholar 

  27. Hankinson, O. Role of coactivators in transcriptional activation by the aryl hydrocarbon receptor. Arch. Biochem. Biophys. 433, 379–386 (2005).

    CAS  PubMed  Google Scholar 

  28. Yeste, A. et al. Tolerogenic nanoparticles inhibit T cell-mediated autoimmunity through SOCS2. Sci. Signal. 9, ra61 (2016).

    PubMed  Google Scholar 

  29. McBerry, C., Gonzalez, R. M., Shryock, N., Dias, A. & Aliberti, J. SOCS2-induced proteasome-dependent TRAF6 degradation: a common anti-inflammatory pathway for control of innate immune responses. PLOS ONE 7, e38384 (2012). This paper is the first to identify that AHR and SOCS2 interact to control NF-κB activation.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wilson, S. R., Joshi, A. D. & Elferink, C. J. The tumor suppressor Kruppel-like factor 6 is a novel aryl hydrocarbon receptor DNA binding partner. J. Pharmacol. Exp. Ther. 345, 419–429 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ohtake, F. et al. Dioxin receptor is a ligand-dependent E3 ubiquitin ligase. Nature 446, 562–566 (2007).

    CAS  PubMed  Google Scholar 

  32. Mejia-Garcia, A. et al. Activation of AHR mediates the ubiquitination and proteasome degradation of c-Fos through the induction of Ubcm4 gene expression. Toxicology 337, 47–57 (2015).

    CAS  PubMed  Google Scholar 

  33. Bunaciu, R. P. & Yen, A. Activation of the aryl hydrocarbon receptor AhR promotes retinoic acid-induced differentiation of myeloblastic leukemia cells by restricting expression of the stem cell transcription factor Oct4. Cancer Res. 71, 2371–2380 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Luecke-Johansson, S. et al. A molecular mechanism to switch the aryl hydrocarbon receptor from a transcription factor to an E3 ubiquitin ligase. Mol. Cell. Biol. 37, e00630–16 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Vogel, C. F. et al. RelB, a new partner of aryl hydrocarbon receptor-mediated transcription. Mol. Endocrinol. 21, 2941–2955 (2007).

    CAS  PubMed  Google Scholar 

  36. Salisbury, R. L. & Sulentic, C. E. The AhR and NF-kappaB/Rel proteins mediate the inhibitory effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the 3' immunoglobulin heavy chain regulatory region. Toxicol. Sci. 148, 443–459 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Vogel, C. F. et al. Cross-talk between aryl hydrocarbon receptor and the inflammatory response: a role for nuclear factor-kappaB. J. Biol. Chem. 289, 1866–1875 (2014).

    CAS  PubMed  Google Scholar 

  38. Iu, M. et al. RelB attenuates cigarette smoke extract-induced apoptosis in association with transcriptional regulation of the aryl hydrocarbon receptor. Free Radic. Biol. Med. 108, 19–31 (2017).

    CAS  PubMed  Google Scholar 

  39. Kimura, A., Naka, T., Nohara, K., Fujii-Kuriyama, Y. & Kishimoto, T. Aryl hydrocarbon receptor regulates Stat1 activation and participates in the development of Th17 cells. Proc. Natl Acad. Sci. USA 105, 9721–9726 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Quintana, F. J. et al. An endogenous aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 107, 20768–20773 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Veldhoen, M., Hirota, K., Christensen, J., O’Garra, A. & Stockinger, B. Natural agonists for aryl hydrocarbon receptor in culture medium are essential for optimal differentiation of Th17 T cells. J. Exp. Med. 206, 43–49 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Tian, Y., Ke, S., Chen, M. & Sheng, T. Interactions between the aryl hydrocarbon receptor and P-TEFb. Sequential recruitment of transcription factors and differential phosphorylation of C-terminal domain of RNA polymerase II at Cyp1a1 promoter. J. Biol. Chem. 278, 44041–44048 (2003).

    CAS  PubMed  Google Scholar 

  43. Wang, S., Ge, K., Roeder, R. G. & Hankinson, O. Role of mediator in transcriptional activation by the aryl hydrocarbon receptor. J. Biol. Chem. 279, 13593–13600 (2004).

    CAS  PubMed  Google Scholar 

  44. Beischlag, T. V. et al. Recruitment of the NCoA/SRC-1/p160 family of transcriptional coactivators by the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator complex. Mol. Cell. Biol. 22, 4319–4333 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, S. & Hankinson, O. Functional involvement of the Brahma/SWI2-related gene 1 protein in cytochrome P4501A1 transcription mediated by the aryl hydrocarbon receptor complex. J. Biol. Chem. 277, 11821–11827 (2002).

    CAS  PubMed  Google Scholar 

  46. Schnekenburger, M., Peng, L. & Puga, A. HDAC1 bound to the Cyp1a1 promoter blocks histone acetylation associated with Ah receptor-mediated trans-activation. Biochim. Biophys. Acta 1769, 569–578 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Chang, C. C., Sue, Y. M., Yang, N. J., Lee, Y. H. & Juan, S. H. 3-Methylcholanthrene, an AhR agonist, caused cell-cycle arrest by histone deacetylation through a RhoA-dependent recruitment of HDAC1 and pRb2 to E2F1 complex. PLOS ONE 9, e92793 (2014).

    PubMed  PubMed Central  Google Scholar 

  48. Liu, K. Y., Wang, L. T. & Hsu, S. H. Modification of epigenetic histone acetylation in hepatocellular carcinoma. Cancers 10, 8 (2018).

    PubMed Central  Google Scholar 

  49. Grimaldi, G., Rajendra, S. & Matthews, J. The aryl hydrocarbon receptor regulates the expression of TIPARP and its cis long non-coding RNA, TIPARP-AS1. Biochem. Biophys. Res. Commun. 495, 2356–2362 (2018).

    CAS  PubMed  Google Scholar 

  50. Garcia, G. R. et al. In vivo characterization of an AHR-dependent long noncoding RNA required for proper Sox9b expression. Mol. Pharmacol. 91, 609–619 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu, C. C. et al. Micro124-mediated AHR expression regulates the inflammatory response of chronic rhinosinusitis (CRS) with nasal polyps. Biochem. Biophys. Res. Commun. 500, 145–151 (2018).

    CAS  PubMed  Google Scholar 

  52. Rogers, S. et al. Aryl hydrocarbon receptor (AhR)-dependent regulation of pulmonary miRNA by chronic cigarette smoke exposure. Sci. Rep. 7, 40539 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Morales-Hernandez, A. et al. Alu retrotransposons promote differentiation of human carcinoma cells through the aryl hydrocarbon receptor. Nucleic Acids Res. 44, 4665–4683 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Roman, A. C. et al. Dioxin receptor and SLUG transcription factors regulate the insulator activity of B1 SINE retrotransposons via an RNA polymerase switch. Genome Res. 21, 422–432 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Gutierrez-Vazquez, C. & Quintana, F. J. Regulation of the immune response by the aryl hydrocarbon receptor. Immunity 48, 19–33 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bessede, A. et al. Aryl hydrocarbon receptor control of a disease tolerance defence pathway. Nature 511, 184–190 (2014). This paper shows that endotoxin tolerance following repeated exposure to bacterial lipopolysaccharide is mediated by AHR.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Matsumura, F. The significance of the nongenomic pathway in mediating inflammatory signaling of the dioxin-activated Ah receptor to cause toxic effects. Biochem. Pharmacol. 77, 608–626 (2009).

    CAS  PubMed  Google Scholar 

  58. Han, Z. et al. Aryl hydrocarbon receptor mediates laminar fluid shear stress-induced CYP1A1 activation and cell cycle arrest in vascular endothelial cells. Cardiovasc. Res. 77, 809–818 (2008).

    CAS  PubMed  Google Scholar 

  59. Xiao, W., Son, J., Vorrink, S. U., Domann, F. E. & Goswami, P. C. Ligand-independent activation of aryl hydrocarbon receptor signaling in PCB3-quinone treated HaCaT human keratinocytes. Toxicol. Lett. 233, 258–266 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Murray, I. A. et al. Evidence that ligand binding is a key determinant of Ah receptor-mediated transcriptional activity. Arch. Biochem. Biophys. 442, 59–71 (2005).

    CAS  PubMed  Google Scholar 

  61. Lee, C. C. et al. Ligand independent aryl hydrocarbon receptor inhibits lung cancer cell invasion by degradation of Smad4. Cancer Lett. 376, 211–217 (2016).

    CAS  PubMed  Google Scholar 

  62. Ilchmann, A. et al. Impact of culture medium on maturation of bone marrow-derived murine dendritic cells via the aryl hydrocarbon receptor. Mol. Immunol. 51, 42–50 (2012).

    CAS  PubMed  Google Scholar 

  63. Oberg, M., Bergander, L., Hakansson, H., Rannug, U. & Rannug, A. Identification of the tryptophan photoproduct 6-formylindolo[3,2-b]carbazole, in cell culture medium, as a factor that controls the background aryl hydrocarbon receptor activity. Toxicol. Sci. 85, 935–943 (2005).

    PubMed  Google Scholar 

  64. Denison, M. S. & Nagy, S. R. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu. Rev. Pharmacol. Toxicol. 43, 309–334 (2003). This is an outstanding review on AHR agonists focusing on exogenous AHR ligands.

    CAS  PubMed  Google Scholar 

  65. Okey, A. B. An aryl hydrocarbon receptor odyssey to the shores of toxicology: the Deichmann Lecture, International Congress of Toxicology-XI. Toxicol. Sci. 98, 5–38 (2007).

    CAS  PubMed  Google Scholar 

  66. Kafafi, S. A., Afeefy, H. Y., Said, H. K. & Kafafi, A. G. Relationship between aryl hydrocarbon receptor binding, induction of aryl hydrocarbon hydroxylase and 7-ethoxyresorufin O-deethylase enzymes, and toxic activities of aromatic xenobiotics in animals. A new model. Chem. Res. Toxicol. 6, 328–334 (1993).

    CAS  PubMed  Google Scholar 

  67. Kerger, B. D. et al. Age- and concentration-dependent elimination half-life of 2,3,7,8-tetrachlorodibenzo-p-dioxin in Seveso children. Environ. Health Perspect. 114, 1596–1602 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kopec, A. K. et al. Toxicogenomic evaluation of long-term hepatic effects of TCDD in immature, ovariectomized C57BL/6 mice. Toxicol. Sci. 135, 465–475 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Loub, W. D., Wattenberg, L. W. & Davis, D. W. Aryl hydrocarbon hydroxylase induction in rat tissues by naturally occurring indoles of cruciferous plants. J. Natl Cancer Inst. 54, 985–988 (1975).

    CAS  PubMed  Google Scholar 

  70. Song, J. et al. A ligand for the aryl hydrocarbon receptor isolated from lung. Proc. Natl Acad. Sci. USA 99, 14694–14699 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Seok, S. H. et al. Trace derivatives of kynurenine potently activate the aryl hydrocarbon receptor (AHR). J. Biol. Chem. 293, 1994–2005 (2018). This study reveals that TEACOPs are generated from kynurenine and activate AHR with higher affinity than their precursors.

    CAS  PubMed  Google Scholar 

  72. Zelante, T. et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39, 372–385 (2013). This paper identifies the tryptophan catabolites generated from the gut microbiota (L. reuteri) as potent AHR agonists relevant for mucosal immunity. It is one of the first studies to highlight the interaction of L. reuteri and the gut immune system.

    CAS  PubMed  Google Scholar 

  73. Lamas, B. et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med. 22, 598–605 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Natividad, J. M. et al. Impaired aryl hydrocarbon receptor ligand production by the gut microbiota is a key factor in metabolic syndrome. Cell Metab. 28, 737–749 (2018).

    CAS  PubMed  Google Scholar 

  75. Wikoff, W. R. et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl Acad. Sci. USA 106, 3698–3703 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Yeste, A. et al. IL-21 induces IL-22 production in CD4+ T cells. Nat. Commun. 5, 3753 (2014).

    CAS  PubMed  Google Scholar 

  77. Rothhammer, V. et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 22, 586–597 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Rothhammer, V. et al. Microglial control of astrocytes in response to microbial metabolites. Nature 557, 724–728 (2018). References 77 and 78 identify AHR in astrocytes and microglia as a participant of a gut–brain axis that controls CNS inflammation.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Muku, G. E., Murray, I. A., Espin, J. C. & Perdew, G. H. Urolithin A Is a dietary microbiota-derived human aryl hydrocarbon receptor antagonist. Metabolites 8, 86 (2018).

    PubMed Central  Google Scholar 

  80. Poland, A. & Glover, E. Characterization and strain distribution pattern of the murine Ah receptor specified by the Ahd and Ahb-3 alleles. Mol. Pharmacol. 38, 306–312 (1990).

    CAS  PubMed  Google Scholar 

  81. Okey, A. B., Vella, L. M. & Harper, P. A. Detection and characterization of a low affinity form of cytosolic Ah receptor in livers of mice nonresponsive to induction of cytochrome P1-450 by 3-methylcholanthrene. Mol. Pharmacol. 35, 823–830 (1989).

    CAS  PubMed  Google Scholar 

  82. Harrill, J. A. et al. Knockout of the aryl hydrocarbon receptor results in distinct hepatic and renal phenotypes in rats and mice. Toxicol. Appl. Pharmacol. 272, 503–518 (2013).

    CAS  PubMed  Google Scholar 

  83. Walisser, J. A., Bunger, M. K., Glover, E., Harstad, E. B. & Bradfield, C. A. Patent ductus venosus and dioxin resistance in mice harboring a hypomorphic Arnt allele. J. Biol. Chem. 279, 16326–16331 (2004).

    CAS  PubMed  Google Scholar 

  84. Lawrence, B. P. et al. Activation of the aryl hydrocarbon receptor is essential for mediating the anti-inflammatory effects of a novel low-molecular-weight compound. Blood 112, 1158–1165 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Hauben, E. et al. Activation of the aryl hydrocarbon receptor promotes allograft-specific tolerance through direct and dendritic cell-mediated effects on regulatory T cells. Blood 112, 1214–1222 (2008).

    CAS  PubMed  Google Scholar 

  86. Kerkvliet, N. I. et al. Activation of aryl hydrocarbon receptor by TCDD prevents diabetes in NOD mice and increases Foxp3+T cells in pancreatic lymph nodes. Immunotherapy 1, 539–547 (2009).

    CAS  PubMed  Google Scholar 

  87. Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. & Stockinger, B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    CAS  PubMed  Google Scholar 

  88. Korn, T. et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448, 484–487 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. McGeachy, M. J. et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat. Immunol. 8, 1390–1397 (2007).

    CAS  PubMed  Google Scholar 

  90. McGeachy, M. J. GM-CSF: the secret weapon in the T(H)17 arsenal. Nat. Immunol. 12, 521–522 (2011).

    CAS  PubMed  Google Scholar 

  91. Lee, Y. et al. Induction and molecular signature of pathogenic TH17 cells. Nat. Immunol. 13, 991–999 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Peters, A., Lee, Y. & Kuchroo, V. K. The many faces of Th17 cells. Curr. Opin. Immunol. 23, 702–706 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Ghoreschi, K. et al. Generation of pathogenic T(H)17 cells in the absence of TGF-beta signalling. Nature 467, 967–971 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Quintana, F. J. et al. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 453, 65–71 (2008).

    CAS  PubMed  Google Scholar 

  95. Veldhoen, M. et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453, 106–109 (2008).

    CAS  PubMed  Google Scholar 

  96. McAleer, J. P., Fan, J., Roar, B., Primerano, D. A. & Denvir, J. Cytokine regulation in human CD4 T cells by the aryl hydrocarbon receptor and Gq-coupled receptors. Sci. Rep. 8, 10954 (2018).

    PubMed  PubMed Central  Google Scholar 

  97. Ramirez, J. M. et al. Activation of the aryl hydrocarbon receptor reveals distinct requirements for IL-22 and IL-17 production by human T helper cells. Eur. J. Immunol. 40, 2450–2459 (2010).

    CAS  PubMed  Google Scholar 

  98. Trifari, S., Kaplan, C. D., Tran, E. H., Crellin, N. K. & Spits, H. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells. Nat. Immunol. 10, 864–871 (2009).

    CAS  PubMed  Google Scholar 

  99. Talbot, J. et al. Smoking-induced aggravation of experimental arthritis is dependent of aryl hydrocarbon receptor activation in Th17 cells. Arthritis Res. Ther. 20, 119 (2018).

    PubMed  PubMed Central  Google Scholar 

  100. Quintana, F. J. et al. Aiolos promotes TH17 differentiation by directly silencing Il2 expression. Nat. Immunol. 13, 770–777 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Gagliani, N. et al. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature 523, 221–225 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Wei, P. et al. An aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress the Th17 response in allergic rhinitis patients. Lab. Invest. 94, 528–535 (2014).

    CAS  PubMed  Google Scholar 

  103. Longhi, M. S. et al. Bilirubin suppresses Th17 immunity in colitis by upregulating CD39. JCI Insight 2, e92791 (2017).

    PubMed Central  Google Scholar 

  104. Apetoh, L. et al. The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nat. Immunol. 11, 854–861 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Gandhi, R. et al. Activation of the aryl hydrocarbon receptor induces human type 1 regulatory T cell-like and Foxp3(+) regulatory T cells. Nat. Immunol. 11, 846–853 (2010). References 94, 95, 104 and 105 reveal the relevance of AHR signalling for T cell polarization and the molecular mechanisms involved.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Wu, H. Y. et al. In vivo induction of Tr1 cells via mucosal dendritic cells and AHR signaling. PLOS ONE 6, e23618 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Funatake, C. J., Marshall, N. B., Steppan, L. B., Mourich, D. V. & Kerkvliet, N. I. Cutting edge: activation of the aryl hydrocarbon receptor by 2,3,7,8-tetrachlorodibenzo-p-dioxin generates a population of CD4+CD25+ cells with characteristics of regulatory T cells. J. Immunol. 175, 4184–4188 (2005).

    CAS  PubMed  Google Scholar 

  108. Singh, N. P. et al. Activation of aryl hydrocarbon receptor (AhR) leads to reciprocal epigenetic regulation of FoxP3 and IL-17 expression and amelioration of experimental colitis. PLOS ONE 6, e23522 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Joller, N. et al. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 40, 569–581 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Stockinger, B., Veldhoen, M. & Hirota, K. Modulation of Th17 development and function by activation of the aryl hydrocarbon receptor—the role of endogenous ligands. Eur. J. Immunol. 39, 652–654 (2009).

    CAS  PubMed  Google Scholar 

  111. Quintana, F. J. LeA(H)Rning self-control. Cell Res. 24, 1155–1156 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Quintana, F. J. & Sherr, D. H. Aryl hydrocarbon receptor control of adaptive immunity. Pharmacol. Rev. 65, 1148–1161 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Matikainen, T. et al. Aromatic hydrocarbon receptor-driven Bax gene expression is required for premature ovarian failure caused by biohazardous environmental chemicals. Nat. Genet. 28, 355–360 (2001).

    CAS  PubMed  Google Scholar 

  114. Quintana, F. J., Yeste, A. & Mascanfroni, I. D. Role and therapeutic value of dendritic cells in central nervous system autoimmunity. Cell Death Differ. 22, 215–224 (2015).

    CAS  PubMed  Google Scholar 

  115. Chng, S. H. et al. Ablating the aryl hydrocarbon receptor (AhR) in CD11c+cells perturbs intestinal epithelium development and intestinal immunity. Sci. Rep. 6, 23820 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Ettmayer, P. et al. A novel low molecular weight inhibitor of dendritic cells and B cells blocks allergic inflammation. Am. J. Respir. Crit. Care Med. 173, 599–606 (2006).

    CAS  PubMed  Google Scholar 

  117. Baba, N. et al. The aryl hydrocarbon receptor (AhR) ligand VAF347 selectively acts on monocytes and naive CD4(+) Th cells to promote the development of IL-22-secreting Th cells. Hum. Immunol. 73, 795–800 (2012).

    CAS  PubMed  Google Scholar 

  118. Thordardottir, S. et al. The aryl hydrocarbon receptor antagonist StemRegenin 1 promotes human plasmacytoid and myeloid dendritic cell development from CD34+hematopoietic progenitor cells. Stem Cells Dev. 23, 955–967 (2014).

    CAS  PubMed  Google Scholar 

  119. Goudot, C. et al. Aryl hydrocarbon receptor controls monocyte differentiation into dendritic cells versus macrophages. Immunity 47, 582–596 (2017).

    CAS  PubMed  Google Scholar 

  120. Lu, L. et al. Critical role of all-trans retinoic acid in stabilizing human natural regulatory T cells under inflammatory conditions. Proc. Natl Acad. Sci. USA 111, E3432–E3440 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Mezrich, J. D. et al. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J. Immunol. 185, 3190–3198 (2010).

    CAS  PubMed  Google Scholar 

  122. Nguyen, N. T. et al. Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc. Natl Acad. Sci. USA 107, 19961–19966 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Vogel, C. F., Goth, S. R., Dong, B., Pessah, I. N. & Matsumura, F. Aryl hydrocarbon receptor signaling mediates expression of indoleamine 2,3-dioxygenase. Biochem. Biophys. Res. Commun. 375, 331–335 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Benson, J. M. & Shepherd, D. M. Dietary ligands of the aryl hydrocarbon receptor induce anti-inflammatory and immunoregulatory effects on murine dendritic cells. Toxicol. Sci. 124, 327–338 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Mascanfroni, I. D. et al. IL-27 acts on DCs to suppress the T cell response and autoimmunity by inducing expression of the immunoregulatory molecule CD39. Nat. Immunol. 14, 1054–1063 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Bankoti, J. et al. Effects of TCDD on the fate of naive dendritic cells. Toxicol. Sci. 115, 422–434 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Jin, U. H. et al. Microbiome-derived tryptophan metabolites and their aryl hydrocarbon receptor-dependent agonist and antagonist activities. Mol. Pharmacol. 85, 777–788 (2014).

    PubMed  PubMed Central  Google Scholar 

  128. Takamura, T. et al. Activation of the aryl hydrocarbon receptor pathway may ameliorate dextran sodium sulfate-induced colitis in mice. Immunol. Cell Biol. 88, 685–689 (2010).

    CAS  PubMed  Google Scholar 

  129. Arsenescu, R. et al. Role of the xenobiotic receptor in inflammatory bowel disease. Inflamm. Bowel Dis. 17, 1149–1162 (2011).

    PubMed  Google Scholar 

  130. Ikuta, T., Kurosumi, M., Yatsuoka, T. & Nishimura, Y. Tissue distribution of aryl hydrocarbon receptor in the intestine: Implication of putative roles in tumor suppression. Exp. Cell Res. 343, 126–134 (2016).

    CAS  PubMed  Google Scholar 

  131. Monteleone, I. et al. Aryl hydrocarbon receptor-driven signals inhibit collagen synthesis in the gut. Eur. J. Immunol. 46, 1047–1057 (2016).

    CAS  PubMed  Google Scholar 

  132. Metidji, A. et al. The environmental sensor AHR protects from inflammatory damage by maintaining intestinal stem cell homeostasis and barrier integrity. Immunity 49, 353–362 (2018). This paper shows that AHR in ISCs stabilizes gut epithelial barrier function and controls the regeneration of gut epithelial cells from their precursors.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Lanis, J. M. et al. Tryptophan metabolite activation of the aryl hydrocarbon receptor regulates IL-10 receptor expression on intestinal epithelia. Mucosal Immunol. 10, 1133–1144 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Yu, K. et al. AhR activation protects intestinal epithelial barrier function through regulation of Par-6. J. Mol. Histol. 49, 449–458 (2018).

    CAS  PubMed  Google Scholar 

  135. Yu, M. et al. Aryl hydrocarbon receptor activation modulates intestinal epithelial barrier function by maintaining tight junction integrity. Int. J. Biol. Sci. 14, 69–77 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Fang, L. et al. Anti-TNF therapy induces CD4+T-cell production of IL-22 and promotes epithelial repairs in patients with Crohn’s disease. Inflamm. Bowel Dis. 24, 1733–1744 (2018).

    PubMed  Google Scholar 

  137. Nikoopour, E., Bellemore, S. M. & Singh, B. IL-22, cell regeneration and autoimmunity. Cytokine 74, 35–42 (2015).

    CAS  PubMed  Google Scholar 

  138. Fukumoto, S. et al. Identification of a probiotic bacteria-derived activator of the aryl hydrocarbon receptor that inhibits colitis. Immunol. Cell Biol. 92, 460–465 (2014).

    CAS  PubMed  Google Scholar 

  139. Zhao, Y. et al. MicroRNA-124 promotes intestinal inflammation by targeting aryl hydrocarbon receptor in Crohn’s disease. J. Crohns Colitis 10, 703–712 (2016).

    PubMed  Google Scholar 

  140. Iyer, S. S. et al. Dietary and microbial oxazoles induce intestinal inflammation by modulating aryl hydrocarbon receptor responses. Cell 173, 1123–1134 (2018). This paper identifies oxazoles as a novel class of AHR agonists from dietary and microbial sources with pro-inflammatory function in gut immunity.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Li, Y. et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 147, 629–640 (2011).

    CAS  PubMed  Google Scholar 

  142. Sujino, T. et al. Tissue adaptation of regulatory and intraepithelial CD4( + ) T cells controls gut inflammation. Science 352, 1581–1586 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Cervantes-Barragan, L. et al. Lactobacillus reuteri induces gut intraepithelial CD4(+)CD8alphaalpha(+) T cells. Science 357, 806–810 (2017). This is an elegant study reporting the control of immunoregulatory IELs by microbial metabolites via AHR.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Chen, W. et al. Aryl hydrocarbon receptor activation modulates CD8alphaalpha(+)TCRalphabeta(+) IELs and suppression of colitis manifestations in mice. Biomed. Pharmacother. 87, 127–134 (2017).

    CAS  PubMed  Google Scholar 

  145. Bettelli, E. et al. Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J. Exp. Med. 197, 1073–1081 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Kadowaki, A. et al. Gut environment-induced intraepithelial autoreactive CD4( + ) T cells suppress central nervous system autoimmunity via LAG-3. Nat. Commun. 7, 11639 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Zudaire, E. et al. The aryl hydrocarbon receptor repressor is a putative tumor suppressor gene in multiple human cancers. J. Clin. Invest. 118, 640–650 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Haarmann-Stemmann, T. & Abel, J. The arylhydrocarbon receptor repressor (AhRR): structure, expression, and function. Biol. Chem. 387, 1195–1199 (2006).

    CAS  PubMed  Google Scholar 

  149. Brandstatter, O. et al. Balancing intestinal and systemic inflammation through cell type-specific expression of the aryl hydrocarbon receptor repressor. Sci. Rep. 6, 26091 (2016).

    PubMed  PubMed Central  Google Scholar 

  150. Li, S., Bostick, J. W. & Zhou, L. Regulation of innate lymphoid cells by aryl hydrocarbon receptor. Front. Immunol. 8, 1909 (2017).

    PubMed  Google Scholar 

  151. Melo-Gonzalez, F. & Hepworth, M. R. Functional and phenotypic heterogeneity of group 3 innate lymphoid cells. Immunology 150, 265–275 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Lee, J. S. et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat. Immunol. 13, 144–151 (2011).

    PubMed  PubMed Central  Google Scholar 

  153. Kiss, E. A. et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 334, 1561–1565 (2011).

    CAS  PubMed  Google Scholar 

  154. Qiu, J. et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 36, 92–104 (2012).

    CAS  PubMed  Google Scholar 

  155. Qiu, J. et al. Group 3 innate lymphoid cells inhibit T cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora. Immunity 39, 386–399 (2013).

    CAS  PubMed  Google Scholar 

  156. Wagage, S. et al. The group 3 innate lymphoid cell defect in aryl hydrocarbon receptor deficient mice is associated with T cell hyperactivation during intestinal infection. PLOS ONE 10, e0128335 (2015).

    PubMed  PubMed Central  Google Scholar 

  157. Li, J., Doty, A. & Glover, S. C. Aryl hydrocarbon receptor signaling involves in the human intestinal ILC3/ILC1 conversion in the inflamed terminal ileum of Crohn’s disease patients. Inflamm. Cell Signal. 3, e1404 (2016).

    PubMed  PubMed Central  Google Scholar 

  158. Wheeler, M. A. & Quintana, F. J. Regulation of astrocyte functions in multiple sclerosis. Cold Spring Harb. Perspect. Med. 9, a029009 (2018).

    Google Scholar 

  159. Khakh, B. S. & Sofroniew, M. V. Diversity of astrocyte functions and phenotypes in neural circuits. Nat. Neurosci. 18, 942–952 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Pekny, M. et al. Astrocytes: a central element in neurological diseases. Acta Neuropathol. 131, 323–345 (2016).

    CAS  PubMed  Google Scholar 

  161. Sofroniew, M. V. Astrocyte barriers to neurotoxic inflammation. Nat. Rev. Neurosci. 16, 249–263 (2015). This is a comprehensive review of astrocyte functions in the inflamed CNS.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Rothhammer, V. & Quintana, F. J. Control of autoimmune CNS inflammation by astrocytes. Semin. Immunopathol. 37, 625–638 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Rothhammer, V. & Quintana, F. J. Environmental control of autoimmune inflammation in the central nervous system. Curr. Opin. Immunol. 43, 46–53 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Colonna, M. & Butovsky, O. Microglia function in the central nervous system during health and neurodegeneration. Annu. Rev. Immunol. 35, 441–468 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Kierdorf, K. & Prinz, M. Microglia in steady state. J. Clin. Invest. 127, 3201–3209 (2017).

    PubMed  PubMed Central  Google Scholar 

  166. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017). This study describes mechanisms mediating microglial control of neurotoxic astrocytes.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Prinz, M. & Priller, J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat. Rev. Neurosci. 15, 300–312 (2014).

    CAS  PubMed  Google Scholar 

  168. Nannelli, A. et al. Effect of beta-naphthoflavone on AhR-regulated genes (CYP1A1, 1A2, 1B1, 2S1, Nrf2, and GST) and antioxidant enzymes in various brain regions of pig. Toxicology 265, 69–79 (2009).

    CAS  PubMed  Google Scholar 

  169. Collins, L. L. et al. 2,3,7,8-Tetracholorodibenzo-p-dioxin exposure disrupts granule neuron precursor maturation in the developing mouse cerebellum. Toxicol. Sci. 103, 125–136 (2008).

    CAS  PubMed  Google Scholar 

  170. Dever, D. P. et al. Aryl hydrocarbon receptor deletion in cerebellar granule neuron precursors impairs neurogenesis. Dev. Neurobiol. 76, 533–550 (2016).

    CAS  PubMed  Google Scholar 

  171. Juricek, L. et al. AhR-deficiency as a cause of demyelinating disease and inflammation. Sci. Rep. 7, 9794 (2017).

    PubMed  PubMed Central  Google Scholar 

  172. Kim, S. Y. et al. Deletion of aryl hydrocarbon receptor AHR in mice leads to subretinal accumulation of microglia and RPE atrophy. Invest. Ophthalmol. Vis. Sci. 55, 6031–6040 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Xu, K., Yang, Z., Shi, R., Luo, C. & Zhang, Z. Expression of aryl hydrocarbon receptor in rat brain lesions following traumatic brain injury. Diagn. Pathol. 11, 72 (2016).

    PubMed  PubMed Central  Google Scholar 

  174. Buttgereit, A. et al. Sall1 is a transcriptional regulator defining microglia identity and function. Nat. Immunol. 17, 1397–1406 (2016).

    CAS  PubMed  Google Scholar 

  175. Ayata, P. et al. Epigenetic regulation of brain region-specific microglia clearance activity. Nat. Neurosci. 21, 1049–1060 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Lee, Y. H. et al. Aryl hydrocarbon receptor mediates both proinflammatory and anti-inflammatory effects in lipopolysaccharide-activated microglia. Glia 63, 1138–1154 (2015).

    PubMed  Google Scholar 

  177. Erny, D. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18, 965–977 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Sampson, T. R. et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167, 1469–1480 (2016). References 177 and 178 describe the control of microglia by microbial metabolites.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Erny, D. & Prinz, M. Microbiology: Gut microbes augment neurodegeneration. Nature 544, 304–305 (2017).

    CAS  PubMed  Google Scholar 

  180. Rothhammer, V. et al. Dynamic regulation of serum aryl hydrocarbon receptor agonists in MS. Neurol. Neuroimmunol. Neuroinflamm. 4, e359 (2017).

    PubMed  PubMed Central  Google Scholar 

  181. Kaye, J. et al. Laquinimod arrests experimental autoimmune encephalomyelitis by activating the aryl hydrocarbon receptor. Proc. Natl Acad. Sci. USA 113, E6145–E6152 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Berg, J. et al. The immunomodulatory effect of laquinimod in CNS autoimmunity is mediated by the aryl hydrocarbon receptor. J. Neuroimmunol. 298, 9–15 (2016).

    CAS  PubMed  Google Scholar 

  183. Vollmer, T. L. et al. A randomized placebo-controlled phase III trial of oral laquinimod for multiple sclerosis. J. Neurol. 261, 773–783 (2014).

    CAS  PubMed  Google Scholar 

  184. Bruck, W. et al. Reduced astrocytic NF-kappaB activation by laquinimod protects from cuprizone-induced demyelination. Acta Neuropathol. 124, 411–424 (2012).

    PubMed  PubMed Central  Google Scholar 

  185. Lutterotti, A. et al. Antigen-specific tolerance by autologous myelin peptide-coupled cells: a phase 1 trial in multiple sclerosis. Sci. Transl Med. 5, 188ra175 (2013).

    Google Scholar 

  186. Weiner, H. L., da Cunha, A. P., Quintana, F. & Wu, H. Oral tolerance. Immunol. Rev. 241, 241–259 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Quintana, F. J., Carmi, P., Mor, F. & Cohen, I. R. Inhibition of adjuvant arthritis by a DNA vaccine encoding human heat shock protein 60. J. Immunol. 169, 3422–3428 (2002).

    CAS  PubMed  Google Scholar 

  188. Robinson, W. H. et al. Protein microarrays guide tolerizing DNA vaccine treatment of autoimmune encephalomyelitis. Nat. Biotechnol. 21, 1033–1039 (2003).

    CAS  PubMed  Google Scholar 

  189. Quintana, F. J. Nanoparticles for the induction of antigen-specific Tregs. Immunotherapy 5, 437–440 (2013).

    CAS  PubMed  Google Scholar 

  190. Yeste, A., Nadeau, M., Burns, E. J., Weiner, H. L. & Quintana, F. J. Nanoparticle-mediated codelivery of myelin antigen and a tolerogenic small molecule suppresses experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 109, 11270–11275 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Miani, M. et al. Gut microbiota-stimulated innate lymphoid cells support beta-defensin 14 expression in pancreatic endocrine cells, preventing autoimmune diabetes. Cell Metab. 28, 557–572 (2018).

    CAS  PubMed  Google Scholar 

  192. Smith, S. H. et al. Tapinarof is a natural AhR agonist that resolves skin inflammation in mice and humans. J. Invest. Dermatol. 137, 2110–2119 (2017).

    CAS  PubMed  Google Scholar 

  193. Balachandran, V. P. et al. Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nat. Med. 17, 1094–1100 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. van Baren, N. & Van den Eynde, B. J. Tumoral immune resistance mediated by enzymes that degrade tryptophan. Cancer Immunol. Res. 3, 978–985 (2015).

    PubMed  Google Scholar 

  195. Pei, Z. et al. Aminoisoxazoles as potent inhibitors of tryptophan 2,3-dioxygenase 2 (TDO2). ACS Med. Chem. Lett. 9, 417–421 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Laurans, L. et al. Genetic deficiency of indoleamine 2,3-dioxygenase promotes gut microbiota-mediated metabolic health. Nat. Med. 24, 1113–1120 (2018).

    CAS  PubMed  Google Scholar 

  197. Gabriely, G., Wheeler, M. A., Takenaka, M. C. & Quintana, F. J. Role of AHR and HIF-1alpha in glioblastoma metabolism. Trends Endocrinol. Metab. 28, 428–436 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Triplett, T. A. et al. Reversal of indoleamine 2,3-dioxygenase-mediated cancer immune suppression by systemic kynurenine depletion with a therapeutic enzyme. Nat. Biotechnol. 36, 758–764 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Opitz, C. A. et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478, 197–203 (2011). This study reports a novel role for tumour tryptophan metabolites in the pathogenesis of glioblastoma.

    CAS  PubMed  Google Scholar 

  200. Gramatzki, D. et al. Aryl hydrocarbon receptor inhibition downregulates the TGF-beta/Smad pathway in human glioblastoma cells. Oncogene 28, 2593–2605 (2009).

    CAS  PubMed  Google Scholar 

  201. Silginer, M. et al. The aryl hydrocarbon receptor links integrin signaling to the TGF-beta pathway. Oncogene 35, 3260–3271 (2016).

    CAS  PubMed  Google Scholar 

  202. Takanaga, H., Yoshitake, T., Yatabe, E., Hara, S. & Kunimoto, M. Beta-naphthoflavone disturbs astrocytic differentiation of C6 glioma cells by inhibiting autocrine interleukin-6. J. Neurochem. 90, 750–757 (2004).

    CAS  PubMed  Google Scholar 

  203. Litzenburger, U. M. et al. Constitutive IDO expression in human cancer is sustained by an autocrine signaling loop involving IL-6, STAT3 and the AHR. Oncotarget 5, 1038–1051 (2014).

    PubMed  PubMed Central  Google Scholar 

  204. Nguyen, L. P. & Bradfield, C. A. The search for endogenous activators of the aryl hydrocarbon receptor. Chem. Res. Toxicol. 21, 102–116 (2008).

    CAS  PubMed  Google Scholar 

  205. Xu, S. et al. Synergy between the ectoenzymes CD39 and CD73 contributes to adenosinergic immunosuppression in human malignant gliomas. Neuro Oncol. 15, 1160–1172 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants NS102807, NS087867, ES02530, AI126880 and AI093903 from the US National Institutes of Health, RSG-14-198-01-LIB from the American Cancer Society, RG4111A1 and JF2161-A-5 from the National Multiple Sclerosis Society and PA-1604-08459 from the International Progressive MS Alliance. The authors thank all members of the Quintana laboratory for helpful advice and discussions.

Author contributions

Both V.R. and F.J.Q. researched data and reviewed and edited the manuscript. V.R. wrote the manuscript.

Reviewer information

Nature Reviews Immunology thanks M. Colonna and other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Quintana.

Ethics declarations

Competing interests

F.J.Q. is a founder of AnTolRx, a company exploring the targeting of aryl hydrocarbon receptor (AHR) with nanoparticles for the treatment of inflammatory conditions. He is also a scientific adviser for Kyn Therapeutics, a company exploring targeting AHR for cancer therapy.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Mediator complex

An evolutionarily conserved multisubunit protein complex controlling the activities of RNA polymerase II, which transcribes all protein-coding genes in eukaryotes. Mediator serves as a functional bridge between specific transcription factors, DNA-bound transcriptional activators or repressors and the transcriptional machinery required for the initiation of transcription by the basal transcriptional machinery (including RNA polymerase II and general transcription factors).

SWI/SNF chromatin remodelling complex

(Switching-defective/sucrose non-fermenting chromatin remodelling complex). An ATP-dependent chromatin remodelling protein complex that was first identified in yeast. Related complexes exist in mammals (where they are known as BAF) and are involved in the chromatin remodelling of various genes.

Kynurenine pathway

A metabolic pathway in which the essential amino acid tryptophan is metabolized to the cofactor NAD+ over several enzymatic steps. The first reaction in this process, mediated by the enzymes indoleamine 2,3-dioxygenase 1 (IDO1), IDO2 or tryptophan 2,3-dioxygenase (TDO), leads to the generation of kynurenine. Kynurenine and some of its metabolites act as aryl hydrocarbon receptor (AHR) ligands and exert important functions in the immune system in inflammatory, infectious and neoplastic disorders.

T regulatory type 1 cells

(TR1 cells). A population of regulatory T cells that arises in the periphery after an encounter with antigen in the presence of IL-27 alone or in combination with transforming growth factor-β (TGFβ) and that regulates immune responses through the secretion of IL-10 and additional mechanisms. TR1 cells suppress T cell responses, downregulate the expression of co-stimulatory molecules and pro-inflammatory cytokines by antigen-presenting cells and favour the production of IgD, IgA and IgG by B cells.

Intraepithelial lymphocytes

(IELs). A T cell population found within the epithelial layer of mammalian mucosal linings. This population consists of specialized subsets of cells, such as particular T cell receptor (TCR) γδ+ T cell subsets and TCRαβ+CD8αα+ T cells.

Innate lymphoid cells

(ILCs). A population of innate immune cells that are lymphoid in morphology and developmental origin but lack properties of adaptive B cells and T cells such as recombined antigen-specific receptors. They function in the regulation of immunity, tissue homeostasis and inflammation in response to cytokine stimulation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rothhammer, V., Quintana, F.J. The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nat Rev Immunol 19, 184–197 (2019). https://doi.org/10.1038/s41577-019-0125-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-019-0125-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing