Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

The importance of exosomal PDL1 in tumour immune evasion

Subjects

Abstract

The interaction of programmed cell death 1 ligand 1 (PDL1) with its receptor programmed cell death 1 (PD1) inhibits T cell responses, and blockade of this interaction has proven to be an effective immunotherapy for several different cancers. PDL1 can be expressed on the surface of tumour cells, immune cells and other cells in the tumour microenvironment but is also found in extracellular forms. Recent studies have explored the importance of different forms of extracellular PDL1, such as on exosomes or as a freely soluble protein, and have shown that PDL1-expressing exosomes can inhibit antitumour immune responses. In patients with melanoma, exosomal PDL1 is also a marker of immune activation early after initiation of therapy with PD1-blocking antibodies and predicts a clinical response to PD1 blockade. In this Progress article, we highlight recent insights into the role of exosomal PDL1 in immune oncology and how it may be useful as a biomarker for the management of cancer or to define a subset of patients who would benefit from therapeutics that block exosome production.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cells expressing PDL1 can produce multiple forms of soluble (extracellular) PDL1.

Similar content being viewed by others

References

  1. Reck, M. et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med. 375, 1823–1833 (2016).

    CAS  PubMed  Google Scholar 

  2. Motzer, R. J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bellmunt, J. et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N. Engl. J. Med. 376, 1015–1026 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Robert, C. et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 372, 320–330 (2015).

    CAS  PubMed  Google Scholar 

  5. Ansell, S. M. et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N. Engl. J. Med. 372, 311–319 (2015).

    PubMed  Google Scholar 

  6. Schmid, P. et al. Atezolizumab and Nab-paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med. 379, 2108–2121 (2018).

    CAS  PubMed  Google Scholar 

  7. Latchman, Y. et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2, 261–268 (2001).

    CAS  PubMed  Google Scholar 

  8. Parry, R. V. et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell Biol. 25, 9543–9553 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bennett, F. et al. Program death-1 engagement upon TCR activation has distinct effects on costimulation and cytokine-driven proliferation: attenuation of ICOS, IL-4, and IL-21, but not CD28, IL-7, and IL-15 responses. J. Immunol. 170, 711–718 (2003).

    CAS  PubMed  Google Scholar 

  10. Gabrusiewicz, K. et al. Glioblastoma stem cell-derived exosomes induce M2 macrophages and PD-L1 expression on human monocytes. Oncoimmunology 7, e1412909 (2018).

    PubMed  PubMed Central  Google Scholar 

  11. Yu, J. et al. Detection of exosomal PD-L1 RNA in saliva of patients with periodontitis. Front. Genet. 10, 202 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ogata-Kawata, H. et al. Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS One 9, e92921 (2014).

    PubMed  PubMed Central  Google Scholar 

  13. Li, Q. et al. Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer. Tumour Biol. 36, 2007–2012 (2015).

    PubMed  Google Scholar 

  14. Liu, H. et al. Exosomes derived from dendritic cells improve cardiac function via activation of CD4+ T lymphocytes after myocardial infarction. J. Mol. Cell Cardiol. 91, 123–133 (2016).

    CAS  PubMed  Google Scholar 

  15. Arslan, F. et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res. 10, 301–312 (2013).

    CAS  PubMed  Google Scholar 

  16. Herbst, R. S. et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515, 563–567 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, G. et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560, 382–386 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim, D. H. et al. Exosomal PD-L1 promotes tumor growth through immune escape in non-small cell lung cancer. Exp. Mol. Med. 51, 94 (2019).

    PubMed Central  Google Scholar 

  19. Poggio, M. et al. Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell 177, 414–427.e13 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Mahoney, K. M., Rennert, P. D. & Freeman, G. J. Combination cancer immunotherapy and new immunomodulatory targets. Nat. Rev. Drug Discov. 14, 561–584 (2015).

    CAS  PubMed  Google Scholar 

  21. Frigola, X. et al. Identification of a soluble form of B7-H1 that retains immunosuppressive activity and is associated with aggressive renal cell carcinoma. Clin. Cancer Res. 17, 1915–1923 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, L. J. et al. B7-H4 expression associates with cancer progression and predicts patient’s survival in human esophageal squamous cell carcinoma. Cancer Immunol. Immunother. 60, 1047–1055 (2011).

    CAS  PubMed  Google Scholar 

  23. Gong, B. et al. Secreted PD-L1 variants mediate resistance to PD-L1 blockade therapy in non-small cell lung cancer. J. Exp. Med. 216, 982–1000 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou, J. et al. Soluble PD-L1 as a biomarker in malignant melanoma treated with checkpoint blockade. Cancer Immunol. Res. 5, 480–492 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Mahoney, K. M. et al. A secreted PD-L1 splice variant that covalently dimerizes and mediates immunosuppression. Cancer Immunol. Immunother. 68, 421–432 (2019).

    CAS  PubMed  Google Scholar 

  26. Hassounah, N. B. et al. Identification and characterization of an alternative cancer-derived PD-L1 splice variant. Cancer Immunol. Immunother. 68, 407–420 (2019).

    CAS  PubMed  Google Scholar 

  27. Yang, K. N., Han, W., Qin, Y. J. & Chen, L. N. Effects of different levels of soluble PD-L1 protein on the growth of Lewis lung cancer transplanted tumor. J. Biol. Regul. Homeost. Agents 33, 537–542 (2019).

    CAS  PubMed  Google Scholar 

  28. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Peters, S. et al. LBA4_PR: Nivolumab (NIVO) + low-dose ipilimumab (IPI) vs platinum-doublet chemotherapy (chemo) as first-line (1L) treatment (tx) for advanced non-small cell lung cancer (NSCLC): CheckMate 227 Part 1 final. Ann. Oncol. 30 (Suppl. 5), v851–v934 (2019).

    Google Scholar 

  30. Long, G. V. et al. PD-L1 expression as a biomarker for nivolumab (NIVO) plus ipilimumab (IPI) and NIVO alone in advanced melanoma (MEL): a pooled analysis. Ann. Oncol. 27 (Suppl. 6), 1112PD (2016).

    Google Scholar 

  31. Carbognin, L. et al. Differential activity of nivolumab, pembrolizumab and MPDL3280A according to the tumor expression of programmed death-ligand-1 (PD-L1): sensitivity analysis of trials in melanoma, lung and genitourinary cancers. PLoS One 10, e0130142 (2015).

    PubMed  PubMed Central  Google Scholar 

  32. Marshall, H. T. & Djamgoz, M. B. A. Immuno-oncology: emerging targets and combination therapies. Front. Oncol. 8, 315 (2018).

    PubMed  PubMed Central  Google Scholar 

  33. Guo, Y. et al. Effects of exosomes on pre-metastatic niche formation in tumors. Mol. Cancer 18, 39 (2019).

    PubMed  PubMed Central  Google Scholar 

  34. Whiteside, T. L. The emerging role of plasma exosomes in diagnosis, prognosis and therapies of patients with cancer. Contemp. Oncol. 22, 38–40 (2018).

    Google Scholar 

  35. Fan, Y. et al. Exosomal PD-L1 retains immunosuppressive activity and is associated with gastric cancer prognosis. Ann. Surg. Oncol. 26, 3745–3755 (2019).

    PubMed  Google Scholar 

  36. Theodoraki, M. N., Yerneni, S. S., Hoffmann, T. K., Gooding, W. E. & Whiteside, T. L. Clinical significance of PD-L1+ exosomes in plasma of head and neck cancer patients. Clin. Cancer Res. 24, 896–905 (2018).

    CAS  PubMed  Google Scholar 

  37. Taube, J. M. et al. Colocalization of inflammatory response with B7-H1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci. Transl Med. 4, 127ra137 (2012).

    Google Scholar 

  38. Costantini, A. et al. Predictive role of plasmatic biomarkers in advanced non-small cell lung cancer treated by nivolumab. Oncoimmunology 7, e1452581 (2018).

    PubMed  PubMed Central  Google Scholar 

  39. Benci, J. L. et al. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell 167, 1540–1554.e12 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Brown, J. A. et al. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J. Immunol. 170, 1257–1266 (2003).

    CAS  PubMed  Google Scholar 

  41. Okuyama, M., Mezawa, H., Kawai, T. & Urashima, M. Elevated soluble PD-L1 in pregnant women’s serum suppresses the immune reaction. Front. Immunol. 10, 86 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ruffner, M. A. et al. B7-1/2, but not PD-L1/2 molecules, are required on IL-10-treated tolerogenic DC and DC-derived exosomes for in vivo function. Eur. J. Immunol. 39, 3084–3090 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Frigola, X. et al. Soluble B7-H1: differences in production between dendritic cells and T cells. Immunol. Lett. 142, 78–82 (2012).

    CAS  PubMed  Google Scholar 

  44. Raftery, M. J., Abdelaziz, M. O., Hofmann, J. & Schonrich, G. Hantavirus-driven PD-L1/PD-L2 upregulation: an imperfect viral immune evasion mechanism. Front. Immunol. 9, 2560 (2018).

    PubMed  PubMed Central  Google Scholar 

  45. Leon-Flores, A., Del Rio Estrada, P. M., Alvarez-Garcia, L. X., Piten-Isidro, E. & Reyes-Teran, G. Increased levels of soluble co-stimulatory molecule PD-L1 (B7-H1) in the plasma of viraemic HIV-1+ individuals. Immunol. Lett. 203, 70–79 (2018).

    CAS  PubMed  Google Scholar 

  46. Li, Y. et al. Role of soluble programmed death-1 (sPD-1) and sPD-ligand 1 in patients with cystic echinococcosis. Exp. Ther. Med. 11, 251–256 (2016).

    CAS  PubMed  Google Scholar 

  47. Chen, Y. et al. sPD-L1 expression is associated with immunosuppression and infectious complications in patients with acute pancreatitis. Scand. J. Immunol. 86, 100–106 (2017).

    CAS  PubMed  Google Scholar 

  48. Cubillos-Zapata, C. et al. Age-dependent hypoxia-induced PD-L1 upregulation in patients with obstructive sleep apnoea. Respirology 24, 684–692 (2019).

    PubMed  Google Scholar 

  49. Jovanovic, D. et al. Membrane PD-L1 expression and soluble PD-L1 plasma levels in idiopathic pulmonary fibrosis — a pilot study. J. Thorac. Dis. 10, 6660–6669 (2018).

    PubMed  PubMed Central  Google Scholar 

  50. Noman, M. Z. et al. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J. Exp. Med. 211, 781–790 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen, Y. et al. Development of a sandwich ELISA for evaluating soluble PD-L1 (CD274) in human sera of different ages as well as supernatants of PD-L1+ cell lines. Cytokine 56, 231–238 (2011).

    CAS  PubMed  Google Scholar 

  52. Wei, W. et al. Prognostic significance of circulating soluble programmed death ligand-1 in patients with solid tumors: a meta-analysis. Medicine 97, e9617 (2018).

    PubMed  PubMed Central  Google Scholar 

  53. Ruf, M., Moch, H. & Schraml, P. PD-L1 expression is regulated by hypoxia inducible factor in clear cell renal cell carcinoma. Int. J. Cancer 139, 396–403 (2016).

    CAS  PubMed  Google Scholar 

  54. Kushlinskii, N. E. et al. Soluble ligand of the immune checkpoint receptor (sPD-L1) in blood serum of patients with renal cell carcinoma. Bull. Exp. Biol. Med. 166, 353–357 (2019).

    CAS  PubMed  Google Scholar 

  55. Jalali, S. et al. Soluble PD-1 ligands regulate T-cell function in Waldenstrom macroglobulinemia. Blood Adv. 2, 1985–1997 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Shigemori, T. et al. Soluble PD-L1 expression in circulation as a predictive marker for recurrence and prognosis in gastric cancer: direct comparison of the clinical burden between tissue and serum PD-L1 expression. Ann. Surg. Oncol. 26, 876–883 (2019).

    PubMed  Google Scholar 

  57. Shen, H. et al. Soluble programmed death-ligand 1 are highly expressed in peripheral T-cell lymphoma: a biomarker for prognosis. Hematology 24, 392–398 (2019).

    CAS  PubMed  Google Scholar 

  58. Jovanovic, D. et al. Soluble sPD-L1 and serum amyloid A1 as potential biomarkers for lung cancer. J. Med. Biochem. 38, 332–341 (2019).

    PubMed  PubMed Central  Google Scholar 

  59. Ito, M. et al. Is high serum programmed death ligand 1 level a risk factor for poor survival in patients with gastric cancer? Ann. Gastroenterol. Surg. 2, 313–318 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. Zhang, X. et al. Plasma soluble programmed death ligand 1 levels predict clinical response in peripheral T-cell lymphomas. Hematol. Oncol. 37, 270–276 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Morales-Kastresana, A. et al. High-fidelity detection and sorting of nanoscale vesicles in viral disease and cancer. J. Extracell. Vesicles 8, 1597603 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Martinez, V. G. et al. Resistance to HER2-targeted anti-cancer drugs is associated with immune evasion in cancer cells and their derived extracellular vesicles. Oncoimmunology 6, e1362530 (2017).

    PubMed  PubMed Central  Google Scholar 

  63. Nukui, A. et al. Increased serum level of soluble interleukin-2 receptor is associated with a worse response of metastatic clear cell renal cell carcinoma to interferon alpha and sequential VEGF-targeting therapy. BMC Cancer 17, 372 (2017).

    PubMed  PubMed Central  Google Scholar 

  64. Cheng, S. et al. PD-L1 gene polymorphism and high level of plasma soluble PD-L1 protein may be associated with non-small cell lung cancer. Int. J. Biol. Markers 30, e364–e368 (2015).

    CAS  PubMed  Google Scholar 

  65. Chang, B. et al. The correlation and prognostic value of serum levels of soluble programmed death protein 1 (sPD-1) and soluble programmed death-ligand 1 (sPD-L1) in patients with hepatocellular carcinoma. Cancer Immunol. Immunother. 68, 353–363 (2019).

    CAS  PubMed  Google Scholar 

  66. Finkelmeier, F. et al. High levels of the soluble programmed death-ligand (sPD-L1) identify hepatocellular carcinoma patients with a poor prognosis. Eur. J. Cancer 59, 152–159 (2016).

    CAS  PubMed  Google Scholar 

  67. Tominaga, T. et al. Clinical significance of soluble programmed cell death-1 and soluble programmed cell death-ligand 1 in patients with locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy. PLoS One 14, e0212978 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ha, H. et al. Soluble programmed death-ligand 1 (sPDL1) and neutrophil-to-lymphocyte ratio (NLR) predicts survival in advanced biliary tract cancer patients treated with palliative chemotherapy. Oncotarget 7, 76604–76612 (2016).

    PubMed  PubMed Central  Google Scholar 

  69. Ruan, Y. et al. Analysis of plasma EBV-DNA and soluble checkpoint proteins in nasopharyngeal carcinoma patients after definitive intensity-modulated radiotherapy. Biomed. Res. Int. 2019, 3939720 (2019).

    PubMed  PubMed Central  Google Scholar 

  70. Bian, B. et al. Prognostic significance of circulating PD-1, PD-L1, pan-BTN3As, BTN3A1 and BTLA in patients with pancreatic adenocarcinoma. Oncoimmunology 8, e1561120 (2019).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Dana-Farber/Harvard Cancer Center Kidney Cancer SPORE P50CA101942 (to G.J.F. and K.M.M.), a Department of Defense Early Investigator Idea Development Award W81XWH1810500 (to K.M.M.), and grants P50CA206963 and P01AI056299 (to G.J.F.).

Author information

Authors and Affiliations

Authors

Contributions

All authors have been involved in both writing and reviewing of the manuscript.

Corresponding author

Correspondence to Gordon J. Freeman.

Ethics declarations

Competing interests

G.J.F. has patents or pending royalties on the PD1–PDL1 pathway from Roche, Merck MSD, Bristol-Myers-Squibb, Merck KGA, Boehringer-Ingelheim, AstraZeneca, Dako, Leica, Mayo Clinic and Novartis. G.J.F. has served on advisory boards for Roche, Bristol-Myers-Squibb, Xios, Origimed, Triursus, iTeos and NextPoint. The other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Companion diagnostic

A biomarker assay that has been established and validated as a predictive biomarker to direct treatment decisions. A positive score in a companion diagnostic assay is required by the US Food and Drug Administration for treatment with its associated therapeutic. For example, >50% PDL1+ tumour cells for treatment of non-small-cell lung cancer with pembrolizumab monotherapy. By contrast, a complementary diagnostic assay is used by clinicians to aid in risk–benefit analysis of treatment decisions but it is not required for use of the therapeutic.

Exosomes

Small extracellular vesicles present in almost all extracellular fluids, including blood, urine, cerebrospinal fluid and saliva. Exosomes are produced in the endosomal compartment, released from the extracellular membrane and are generally smaller (30–100 nm) than other types of extracellular vesicle. Exosomes can communicate between cells by fusing with a target cell and unloading the exosome contents into the cell.

Microvesicles

Vesicles (100–1000 µm) that are larger than exosomes and not produced through the exocytic pathway (as are exosomes) but by budding from the cell surface. Microvesicles are isolated at lower centrifugation speeds than exosomes and share some functions with exosomes.

TRAMP-C2 model

Transgenic adenocarcinoma of the mouse prostate (TRAMP) is a mouse model of prostate cancer in which prostate cancers arise orthotopically because SV40 large T antigen is expressed in a prostate-restricted manner, locally downregulating the tumour suppressor molecules p53 and RB. The TRAMP-C2 cell line is generated from a spontaneously arising TRAMP tumour and is a transplantable model of prostate cancer in syngeneic C57BL/6 mice.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daassi, D., Mahoney, K.M. & Freeman, G.J. The importance of exosomal PDL1 in tumour immune evasion. Nat Rev Immunol 20, 209–215 (2020). https://doi.org/10.1038/s41577-019-0264-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-019-0264-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing