Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tissue regulatory T cells: regulatory chameleons

Abstract

The FOXP3+CD4+ regulatory T (Treg) cells located in non-lymphoid tissues differ in phenotype and function from their lymphoid organ counterparts. Tissue Treg cells have distinct transcriptomes, T cell receptor repertoires and growth and survival factor dependencies that arm them to survive and operate in their home tissue. Their functions extend beyond immune surveillance to tissue homeostasis, including regulation of local and systemic metabolism, promotion of tissue repair and regeneration, and control of the proliferation, differentiation and fate of non-lymphoid cell progenitors. Treg cells in diverse tissues share a common FOXP3+CD4+ precursor located within lymphoid organs. This precursor undergoes definitive specialization once in the home tissue, following a multilayered array of common and tissue-distinct transcriptional programmes. Our deepening knowledge of tissue Treg cell biology will inform ongoing attempts to harness Treg cells for precision immunotherapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Visceral adipose tissue biology and Treg cells.
Fig. 2: Skeletal muscle biology and Treg cells.
Fig. 3: Skin biology and Treg cells.
Fig. 4: The cellular derivation of tissue Treg cells.
Fig. 5: Analysis of tissue Treg cell transcriptomes.

Similar content being viewed by others

References

  1. Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Khattri, R., Cox, T., Yasayko, S. A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4, 337–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Ait-Oufella, H. et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat. Med. 12, 178–180 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15, 930–939 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Burzyn, D. et al. A special population of regulatory T cells potentiates muscle repair. Cell 155, 1282–1295 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rosenblum, M. D. et al. Response to self antigen imprints regulatory memory in tissues. Nature 480, 538–542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schiering, C. et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature 513, 564–568 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Saxena, A. et al. Regulatory T cells are recruited in the infarcted mouse myocardium and may modulate fibroblast phenotype and function. Am. J. Physiol. Heart Circ. Physiol. 307, H1233–H1242 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Arpaia, N. et al. A distinct function of regulatory T cells in tissue protection. Cell 162, 1078–1079 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Delacher, M. et al. Genome-wide DNA-methylation landscape defines specialization of regulatory T cells in tissues. Nat. Immunol. 18, 1160–1172 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ito, M. et al. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature 565, 246–250 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Cohen, P. & Spiegelman, B. M. Cell biology of fat storage. Mol. Biol. Cell 27, 2523–2527 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, C. et al. TCR transgenic mice reveal stepwise, multi-site acquisition of the distinctive fat-Treg phenotype. Cell 174, 285–299 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kolodin, D. et al. Antigen- and cytokine-driven accumulation of regulatory T cells in visceral adipose tissue of lean mice. Cell Metab. 21, 543–557 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cipolletta, D. et al. PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486, 549–553 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fernandes, R. A. et al. Discovery of surrogate agonists for visceral fat Treg cells that modulate metabolic indices in vivo. eLife 9, e58463 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cipolletta, D. et al. Appearance and disappearance of the mRNA signature characteristic of Treg cells in visceral adipose tissue: age, diet, and PPARγ effects. Proc. Natl Acad. Sci. USA 112, 482–487 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Vasanthakumar, A. et al. The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue-resident regulatory T cells. Nat. Immunol. 16, 276–285 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Han, J. M. et al. IL-33 reverses an obesity-induced deficit in visceral adipose tissue ST2+ T regulatory cells and ameliorates adipose tissue inflammation and insulin resistance. J. Immunol. 194, 4777–4783 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Molofsky, A. B. et al. Interleukin-33 and interferon-γ counter-regulate group 2 innate lymphoid cell activation during immune perturbation. Immunity 43, 161–174 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Halim, T. Y. F. et al. Tissue-restricted adaptive type 2 immunity is orchestrated by expression of the costimulatory molecule OX40L on group 2 innate lymphoid cells. Immunity 48, 1195–1207 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vasanthakumar, A. et al. Sex-specific adipose tissue imprinting of regulatory T cells. Nature 579, 581–585 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chang, S. K. et al. Stromal cell cadherin-11 regulates adipose tissue inflammation and diabetes. J. Clin. Invest. 127, 3300–3312 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Spallanzani, R. G. et al. Distinct immunocyte-promoting and adipocyte-generating stromal components coordinate adipose tissue immune and metabolic tenors. Sci. Immunol. 4, eaaw3658 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mahlakõiv, T. et al. Stromal cells maintain immune cell homeostasis in adipose tissue via production of interleukin-33. Sci. Immunol. 4, eaax0416 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Dahlgren, M. W. et al. Adventitial stromal cells define group 2 innate lymphoid cell tissue niches. Immunity 50, 707–722 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rana, B. M. J. et al. A stromal cell niche sustains ILC2-mediated type-2 conditioning in adipose tissue. J. Exp. Med. 216, 1999–2009 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gupta, O. T. & Gupta, R. K. Visceral adipose tissue mesothelial cells: living on the edge or just taking up space? Trends Endocrinol. Metab. 26, 515–523 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Wu, D. et al. Characterization of regulatory T cells in obese omental adipose tissue in humans. Eur. J. Immunol. 49, 336–347 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Laparra, A. et al. The frequencies of immunosuppressive cells in adipose tissue differ in human, non-human primate, and mouse models. Front. Immunol. 10, 117 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Deiuliis, J. et al. Visceral adipose inflammation in obesity is associated with critical alterations in T regulatory cell numbers. PLoS ONE 6, e16376 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lam, A. J. et al. Innate control of tissue-reparative human regulatory T cells. J. Immunol. 202, 2195–2209 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Tidball, J. G. & Villalta, S. A. Regulatory interactions between muscle and the immune system during muscle regeneration. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R1173–R1187 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Villalta, S. A. et al. Regulatory T cells suppress muscle inflammation and injury in muscular dystrophy. Sci. Transl Med. 6, 258ra142 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Castiglioni, A. et al. FOXP3+ T cells recruited to sites of sterile skeletal muscle injury regulate the fate of satellite cells and guide effective tissue regeneration. PLoS ONE 10, e0128094 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Dispirito, J. R. et al. Molecular diversification of regulatory T cells in nonlymphoid tissues. Sci. Immunol. 3, eaat5861 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cho, J., Kuswanto, W., Benoist, C. & Mathis, D. T cell receptor specificity drives accumulation of a reparative population of regulatory T cells within acutely injured skeletal muscle. Proc. Natl Acad. Sci. USA 116, 26727–26733 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  39. Kuswanto, W. et al. Poor repair of skeletal muscle in aging mice reflects a defect in local, interleukin-33-dependent accumulation of regulatory T cells. Immunity 44, 355–367 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jang, Y. C. et al. Skeletal muscle stem cells: effects of aging and metabolism on muscle regenerative function. Cold Spring Harb. Symp. Quant. Biol. 76, 101–111 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, K. et al. Neuronal, stromal, and T-regulatory cell crosstalk in murine skeletal muscle. Proc. Natl Acad. Sci. USA 117, 5402–5408 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Boothby, I. C., Cohen, J. N. & Rosenblum, M. D. Regulatory T cells in skin injury: at the crossroads of tolerance and tissue repair. Sci. Immunol. 5, eaaz9631 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Belkaid, Y. et al. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420, 502–507 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Scharschmidt, T. C. et al. A wave of regulatory T cells into neonatal skin mediates tolerance to commensal microbes. Immunity 43, 1011–1021 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Scharschmidt, T. C. et al. Commensal microbes and hair follicle morphogenesis coordinately drive Treg migration into neonatal skin. Cell Host Microbe 21, 467–477 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sather, B. D. et al. Altering the distribution of Foxp3+ regulatory T cells results in tissue-specific inflammatory disease. J. Exp. Med. 204, 1335–1347 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dudda, J. C., Perdue, N., Bachtanian, E. & Campbell, D. J. Foxp3+ regulatory T cells maintain immune homeostasis in the skin. J. Exp. Med. 205, 1559–1565 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rubtsov, Y. P. et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 28, 546–558 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Kim, J. M., Rasmussen, J. P. & Rudensky, A. Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol. 8, 191–197 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Remedios, K. A. et al. The TNFRSF members CD27 and OX40 coordinately limit TH17 differentiation in regulatory T cells. Sci. Immunol. 3, eaau2042 (2018).

    Article  PubMed  Google Scholar 

  51. Malhotra, N. et al. RORalpha-expressing T regulatory cells restrain allergic skin inflammation. Sci. Immunol. 3, eaao6923 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ali, N. et al. Regulatory T cells in skin facilitate epithelial stem cell differentiation. Cell 169, 1119–1129 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nosbaum, A. et al. Regulatory T cells facilitate cutaneous wound healing. J. Immunol. 196, 2010–2014 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Mathur, A. N. et al. Treg-cell control of a CXCL5-IL-17 inflammatory axis promotes hair-follicle-stem-cell differentiation during skin-barrier repair. Immunity 50, 655–667 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kalekar, L. A. et al. Regulatory T cells in skin are uniquely poised to suppress profibrotic immune responses. Sci. Immunol. 4, eaaw2910 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shime, H. et al. Proenkephalin+ regulatory T cells expanded by ultraviolet B exposure maintain skin homeostasis with a healing function. Proc. Natl Acad. Sci. USA 117, 20696–20705 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Delacher, M. et al. Precursors for nonlymphoid-tissue Treg cells reside in secondary lymphoid organs and are programmed by the transcription factor BATF. Immunity 52, 295–312 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gratz, I. K. et al. Memory regulatory T cells require IL-7 and not IL-2 for their maintenance in peripheral tissues. J. Immunol. 190, 4483–4487 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Clark, R. A. & Kupper, T. S. IL-15 and dermal fibroblasts induce proliferation of natural regulatory T cells isolated from human skin. Blood 109, 194–202 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sanchez Rodriguez, R. et al. Memory regulatory T cells reside in human skin. J. Clin. Invest. 124, 1027–1036 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Dhariwala, M. O. et al. Developing human skin contains lymphocytes demonstrating a memory signature. Cell Rep. Med. 1, 100132 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chatila, T. A. et al. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J. Clin. Invest. 106, R75–R81 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Conteduca, G. et al. Single nucleotide polymorphisms in the promoter regions of Foxp3 and ICOSLG genes are associated with Alopecia areata. Clin. Exp. Med. 14, 91–97 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Castela, E. et al. Effects of low-dose recombinant interleukin 2 to promote T-regulatory cells in alopecia areata. JAMA Dermatol. 150, 748–751 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Lowe, M. M. et al. Regulatory T cells use arginase 2 to enhance their metabolic fitness in tissues. JCI Insight 4, e129756 (2019).

    Article  PubMed Central  Google Scholar 

  66. Bovenschen, H. J. et al. Foxp3+ regulatory T cells of psoriasis patients easily differentiate into IL-17A-producing cells and are found in lesional skin. J. Invest. Dermatol. 131, 1853–1860 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Ahn, R. et al. RNA-seq and flow-cytometry of conventional, scalp, and palmoplantar psoriasis reveal shared and distinct molecular pathways. Sci. Rep. 8, 11368 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Haxhinasto, S., Mathis, D. & Benoist, C. The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J. Exp. Med. 205, 565–574 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Davies, L. C., Jenkins, S. J., Allen, J. E. & Taylor, P. R. Tissue-resident macrophages. Nat. Immunol. 14, 986–995 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhong, J. et al. T-cell costimulation protects obesity-induced adipose inflammation and insulin resistance. Diabetes 63, 1289–1302 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schmidleithner, L. et al. Enzymatic activity of HPGD in Treg cells suppresses Tconv cells to maintain adipose tissue homeostasis and prevent metabolic dysfunction. Immunity 50, 1232–1248 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Bapat, S. P. et al. Depletion of fat-resident Treg cells prevents age-associated insulin resistance. Nature 528, 137–141 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Deng, T. et al. Adipocyte adaptive immunity mediates diet-induced adipose inflammation and insulin resistance by decreasing adipose Treg cells. Nat. Commun. 8, 15725 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  74. Zhao, X.-Y. et al. The obesity-induced adipokine sST2 exacerbates adipose Treg and ILC2 depletion and promotes insulin resistance. Sci. Adv. 6, eaay6191 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pettersson, U. S. et al. Female mice are protected against high-fat diet induced metabolic syndrome and increase the regulatory T cell population in adipose tissue. PLoS. ONE 7, e46057 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ishikawa, A. et al. Estrogen regulates sex-specific localization of regulatory T cells in adipose tissue of obese female mice. PLoS ONE 15, e0230885 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kälin, S. et al. A Stat6/Pten axis links regulatory T cells with adipose tissue function. Cell Metab. 26, 475–492 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Fang, W. et al. Regulatory T cells promote adipocyte beiging in subcutaneous adipose tissue. FASEB J. 34, 9755–9770 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Medrikova, D. et al. Brown adipose tissue harbors a distinct sub-population of regulatory T cells. PLoS. ONE 10, e0118534 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Mock, J. R. et al. Foxp3+ regulatory T cells promote lung epithelial proliferation. Mucosal Immunol. 7, 1440–1451 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dial, C. F., Tune, M. K., Doerschuk, C. M. & Mock, J. R. Foxp3+ regulatory T cell expression of keratinocyte growth factor enhances lung epithelial proliferation. Am. J. Respir. Cell Mol. Biol. 57, 162–173 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Weirather, J. et al. Foxp3+ CD4± T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ. Res. 115, 55–67 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Li, J. et al. Regulatory T-cells regulate neonatal heart regeneration by potentiating cardiomyocyte proliferation in a paracrine manner. Theranostics 9, 4324–4341 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dombrowski, Y. et al. Regulatory T cells promote myelin regeneration in the central nervous system. Nat. Neurosci. 20, 674–680 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Whibley, N., Tucci, A. & Powrie, F. Regulatory T cell adaptation in the intestine and skin. Nat. Immunol. 20, 386–396 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Leung, O. M. et al. Regulatory T cells promote apelin-mediated sprouting angiogenesis in type 2 diabetes. Cell Rep. 24, 1610–1626 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Hui, S. P. et al. Zebrafish regulatory T cells mediate organ-specific regenerative programs. Dev. Cell 43, 659–672 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Arnold, L. et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med. 204, 1057–1069 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Panduro, M., Benoist, C. & Mathis, D. Treg cells limit IFN-gamma production to control macrophage accrual and phenotype during skeletal muscle regeneration. Proc. Natl Acad. Sci. USA 115, E2585–E2593 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Liesz, A. et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat. Med. 15, 192–199 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Biton, M. et al. T helper cell cytokines modulate intestinal stem cell renewal and differentiation. Cell 175, 1307–1320 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Agudo, J. et al. Quiescent tissue stem cells evade immune surveillance. Immunity 48, 271–285 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sato, T. et al. Regulated IFN signalling preserves the stemness of intestinal stem cells by restricting differentiation into secretory-cell lineages. Nat. Cell Biol. 22, 919–926 (2020).

    Article  CAS  PubMed  Google Scholar 

  94. Fujisaki, J. et al. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature 474, 216–219 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hirata, Y. et al. CD150high bone marrow Tregs maintain hematopoietic stem cell quiescence and immune privilege via adenosine. Cell Stem Cell 22, 445–453 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yang, S. et al. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science 348, 589–594 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Stadinski, B. D. et al. A temporal thymic selection switch and ligand binding kinetics constrain neonatal Foxp3+ Treg cell development. Nat. Immunol. 20, 1046–1058 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sefik, E. et al. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells. Science 349, 993–997 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Samstein, R. M. et al. Extrathymic generation of regulatory T cells in placental mammals mitigates maternal-fetal conflict. Cell 150, 29–38 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zheng, Y. et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463, 808–812 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Miragaia, R. J. et al. Single-cell transcriptomics of regulatory T cells reveals trajectories of tissue adaptation. Immunity 50, 493–504 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sullivan, J. M., Höllbacher, B. & Campbell, D. J. Dynamic expression of Id3 defines the stepwise differentiation of tissue-resident regulatory T cells. J. Immunol. 202, 31–36 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Yang, B.-H. et al. TCF1 and LEF1 control Treg competitive survival and Tfr development to prevent autoimmune diseases. Cell Rep. 27, 3629–3645 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sidwell, T. et al. Attenuation of TCR-induced transcription by Bach2 controls regulatory T cell differentiation and homeostasis. Nat. Commun. 11, 252 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hayatsu, N. et al. Analyses of a mutant Foxp3 allele reveal BATF as a critical transcription factor in the differentiation and accumulation of tissue regulatory T cells. Immunity 47, 268–283 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Cretney, E. et al. The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nat. Immunol. 12, 304–311 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Garg, G. et al. Blimp1 prevents methylation of Foxp3 and loss of regulatory T cell identity at sites of inflammation. Cell Rep. 26, 1854–1868 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Frias, A. B. Jr. et al. The transcriptional regulator Id2 is critical for adipose-resident regulatory T cell differentiation, survival, and function. J. Immunol. 203, 658–664 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Leonard, J. D. et al. Identification of natural regulatory T cell epitopes reveals convergence on a dominant autoantigen. Immunity 47, 107–117 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yissachar, N. et al. An intestinal organ culture system uncovers a role for the nervous system in microbe-immune crosstalk. Cell 168, 1135–1148 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Neumann, C. et al. c-Maf-dependent Treg cell control of intestinal TH17 cells and IgA establishes host-microbiota homeostasis. Nat. Immunol. 20, 471–481 (2019).

    Article  CAS  PubMed  Google Scholar 

  112. Li, A. et al. IL-33 signaling alters regulatory T cell diversity in support of tumor development. Cell Rep. 29, 2998–3008 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hirrlinger, J. et al. Split-cre complementation indicates coincident activity of different genes in vivo. PLoS ONE 4, e4286 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Hirrlinger, J. et al. Split-CreERT2: temporal control of DNA recombination mediated by split-Cre protein fragment complementation. PLoS ONE 4, e8354 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Klinghammer, K., Walther, W. & Hoffmann, J. Choosing wisely - preclinical test models in the era of precision medicine. Cancer Treat. Rev. 55, 36–45 (2017).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors’ laboratory’s work in this area is supported by the JPB Foundation, US National Institutes of Health (NIH) R01 grants DK092541 and AR070334, and NIH grant RC2DK116691. The authors thank present and past laboratory members for their contributions to these studies. They also thank G. Garg and T. Korn for providing the RNA-seq data for the central nervous system Treg cells, and C. Laplace, L. Kozinn and M. Chen for help in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Diane Mathis.

Ethics declarations

Competing interests

The authors declare no competing interests. D.M. is a co-founder of TRex Bio and a consultant for Third Rock Ventures and Pandion Therapeutics.

Additional information

Peer review information

Nature Reviews Immunology thanks M. Rosenblum, S. Sakaguchi and other anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Immunocyte

A cell, such as a lymphocyte, that has an immunological function.

White adipocytes

Fat cells that store lipids as triglycerides. They are found in visceral adipose tissue, which has functions beyond lipid storage, including cushioning and insulating the body, serving as an endocrine organ through secretion of adipokines, cytokines and other mediators, and in antipathogen responses.

Beige adipocytes

Thermogenic adipocytes that can be induced in white adipose tissue — in particular, subcutaneous depots — in response to environmental cues such as cold or short-term nutrient excess.

Brown adipocytes

Lipid storage cells that play a crucial role in non-shivering thermogenesis. They are confined to brown adipose tissue. Like beige adipocytes, they have an elevated mitochondrial content and transcribe a thermogenic programme dependent on expression of UCP1. They are activated by release of β-adrenoreceptor agonists from sympathetic neurons and the adrenal gland.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz-Rojas, A.R., Mathis, D. Tissue regulatory T cells: regulatory chameleons. Nat Rev Immunol 21, 597–611 (2021). https://doi.org/10.1038/s41577-021-00519-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-021-00519-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing