Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis

An Author Correction to this article was published on 19 June 2018

This article has been updated

Abstract

The brain microenvironment imposes a particularly intense selective pressure on metastasis-initiating cells, but successful metastases bypass this control through mechanisms that are poorly understood. Reactive astrocytes are key components of this microenvironment that confine brain metastasis without infiltrating the lesion. Here, we describe that brain metastatic cells induce and maintain the co-option of a pro-metastatic program driven by signal transducer and activator of transcription 3 (STAT3) in a subpopulation of reactive astrocytes surrounding metastatic lesions. These reactive astrocytes benefit metastatic cells by their modulatory effect on the innate and acquired immune system. In patients, active STAT3 in reactive astrocytes correlates with reduced survival from diagnosis of intracranial metastases. Blocking STAT3 signaling in reactive astrocytes reduces experimental brain metastasis from different primary tumor sources, even at advanced stages of colonization. We also show that a safe and orally bioavailable treatment that inhibits STAT3 exhibits significant antitumor effects in patients with advanced systemic disease that included brain metastasis. Responses to this therapy were notable in the central nervous system, where several complete responses were achieved. Given that brain metastasis causes substantial morbidity and mortality, our results identify a novel treatment for increasing survival in patients with secondary brain tumors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: pSTAT3 labels a subpopulation of RAs associated with established brain metastasis independently of the origin of the primary tumor.
Fig. 2: Genetic targeting of Stat3 in RAs impairs the viability of brain metastasis.
Fig. 3: De novo-induced STAT3 activity confers a differential functional identity to RAs.
Fig. 4: pSTAT3+ RAs influence additional components of the brain microenvironment that belong to the innate and acquired immune system.
Fig. 5: Pharmacological targeting of pSTAT3+ RAs impairs the viability of brain metastasis in mice and humans.

Similar content being viewed by others

Data availability

All published non-commercial reagents can be made available upon request to the corresponding author. The proteomics data are available at PRIDE (PXD008956).

Change history

  • 19 June 2018

    In the version of this article originally published, the names of three authors were incorrect. The authors were listed as “Coral Fustero-Torres”, “Elena Pineiro” and “Melchor Sánchez-Martínez”. Their respective names are “Coral Fustero-Torre”, “Elena Piñeiro-Yáñez” and “Melchor Sanchez-Martinez”. The errors have been corrected in the print, HTML and PDF versions of this article.

References

  1. Kienast, Y. et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat. Med. 16, 116–122 (2010).

    Article  CAS  Google Scholar 

  2. Valiente, M. et al. Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell 156, 1002–1016 (2014).

    Article  CAS  Google Scholar 

  3. Sevenich, L. et al. Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role for cathepsin S. Nat. Cell Biol. 16, 876–888 (2014).

    Article  CAS  Google Scholar 

  4. Sofroniew, M. V. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 32, 638–647 (2009).

    Article  CAS  Google Scholar 

  5. Chen, Q. et al. Carcinoma–astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature 533, 493–498 (2016).

    Article  CAS  Google Scholar 

  6. Anderson, M. A., Ao, Y. & Sofroniew, M. V. Heterogeneity of reactive astrocytes. Neurosci. Lett. 565, 23–29 (2014).

    Article  CAS  Google Scholar 

  7. Okada, S. et al. Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat. Med. 12, 829–834 (2006).

    Article  CAS  Google Scholar 

  8. Wanner, I. B. et al. Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J. Neurosci. 33, 12870–12886 (2013).

    Article  CAS  Google Scholar 

  9. LeComte, M. D., Shimada, I. S., Sherwin, C. & Spees, J. L. Notch1–STAT3–ETBR signaling axis controls reactive astrocyte proliferation after brain injury. Proc. Natl Acad. Sci. USA 112, 8726–8731 (2015).

    Article  CAS  Google Scholar 

  10. Ben Haim, L. et al. The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer’s and Huntington’s diseases. J. Neurosci. 35, 2817–2829 (2015).

    Article  Google Scholar 

  11. Jee, Y., Kim, G., Tanuma, N. & Matsumoto, Y. STAT expression and localization in the central nervous system during autoimmune encephalomyelitis in Lewis rats. J. Neuroimmunol. 114, 40–47 (2001).

    Article  CAS  Google Scholar 

  12. Lee, H.-T. et al. Stat3 orchestrates interaction between endothelial and tumor cells and inhibition of Stat3 suppresses brain metastasis of breast cancer cells. Oncotarget 6, 10016–10029 (2015).

    PubMed  PubMed Central  Google Scholar 

  13. Kong, L.-Y. et al. A novel inhibitor of signal transducers and activators of transcription 3 activation is efficacious against established central nervous system melanoma and inhibits regulatory T cells. Clin. Cancer Res. 14, 5759–5768 (2008).

    Article  CAS  Google Scholar 

  14. Singh, M. et al. STAT3 pathway regulates lung-derived brain metastasis initiating cell capacity through miR-21 activation. Oncotarget 6, 27461–27477 (2015).

    PubMed  PubMed Central  Google Scholar 

  15. Hatiboglu, M. A. et al. The tumor microenvironment expression of p-STAT3 influences the efficacy of cyclophosphamide with WP1066 in murine melanoma models. Int. J. Cancer 131, 8–17 (2012).

    Article  CAS  Google Scholar 

  16. Jones, L. M. et al. STAT3 establishes an immunosuppressive microenvironment during the early stages of breast carcinogenesis to promote tumor growth and metastasis. Cancer Res. 76, 1416–1428 (2016).

    Article  CAS  Google Scholar 

  17. Wang, T. et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat. Med. 10, 48–54 (2004).

    Article  Google Scholar 

  18. Berghoff, A. S. et al. Density of tumor-infiltrating lymphocytes correlates with extent of brain edema and overall survival time in patients with brain metastases. Oncoimmunology 5, e1057388 (2016).

    Article  Google Scholar 

  19. Quail, D. F. & Joyce, J. A. The microenvironmental landscape of brain tumors. Cancer Cell 31, 326–341 (2017).

    Article  CAS  Google Scholar 

  20. Ganat, Y. M. et al. Early postnatal astroglial cells produce multilineage precursors and neural stem cells in vivo. J. Neurosci. 26, 8609–8621 (2006).

    Article  CAS  Google Scholar 

  21. Alonzi, T. et al. Essential role of STAT3 in the control of the acute-phase response as revealed by inducible gene inactivation [correction of activation] in the liver. Mol. Cell. Biol. 21, 1621–1632 (2001).

    Article  CAS  Google Scholar 

  22. Chuang, H.-N. et al. Carcinoma cells misuse the host tissue damage response to invade the brain. Glia 61, 1331–1346 (2013).

    Article  Google Scholar 

  23. Iwamaru, A. et al. A novel inhibitor of the STAT3 pathway induces apoptosis in malignant glioma cells both in vitro and in vivo. Oncogene 26, 2435–2444 (2007).

    Article  CAS  Google Scholar 

  24. Steinman, R. A., Wentzel, A., Lu, Y., Stehle, C. & Grandis, J. R. Activation of Stat3 by cell confluence reveals negative regulation of Stat3 by Cdk2. Oncogene 22, 3608–3615 (2003).

    Article  CAS  Google Scholar 

  25. Bachoo, R. M. et al. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 1, 269–277 (2002).

    Article  CAS  Google Scholar 

  26. Anderson, M. A. et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature 532, 195–200 (2016).

    Article  CAS  Google Scholar 

  27. Drukker, M. & Benvenisty, N. The immunogenicity of human embryonic stem-derived cells. Trends Biotechnol. 22, 136–141 (2004).

    Article  CAS  Google Scholar 

  28. Aurora, A. B. & Olson, E. N. Immune modulation of stem cells and regeneration. Cell Stem Cell 15, 14–25 (2014).

    Article  CAS  Google Scholar 

  29. Dubeykovskaya, Z. et al. Neural innervation stimulates splenic TFF2 to arrest myeloid cell expansion and cancer. Nat. Commun. 7, 10517 (2016).

    Article  CAS  Google Scholar 

  30. Cho, J.-H. et al. Unique features of naive CD8+ T cell activation by IL-2. J. Immunol. 191, 5559–5573 (2013).

    Article  CAS  Google Scholar 

  31. Rosenblum, M. D., Way, S. S. & Abbas, A. K. Regulatory T cell memory. Nat. Rev. Immunol. 16, 90–101 (2016).

    Article  CAS  Google Scholar 

  32. Kaur, S. et al. CD47 signaling regulates the immunosuppressive activity of VEGF in T cells. J. Immunol. 193, 3914–3924 (2014).

    Article  CAS  Google Scholar 

  33. Ashraf, M. I. et al. Exogenous lipocalin 2 ameliorates acute rejection in a mouse model of renal transplantation. Am. J. Transplant. 16, 808–820 (2016).

    Article  CAS  Google Scholar 

  34. Thorne, M., Moore, C. S. & Robertson, G. S. Lack of TIMP-1 increases severity of experimental autoimmune encephalomyelitis: effects of darbepoetin alfa on TIMP-1 null and wild-type mice. J. Neuroimmunol. 211, 92–100 (2009).

    Article  CAS  Google Scholar 

  35. Sorokin, L. The impact of the extracellular matrix on inflammation. Nat. Rev. Immunol. 10, 712–723 (2010).

    Article  CAS  Google Scholar 

  36. Wölfle, S. J. et al. PD-L1 expression on tolerogenic APCs is controlled by STAT-3. Eur. J. Immunol. 41, 413–424 (2011).

    Article  Google Scholar 

  37. Ghoochani, A. et al. MIF-CD74 signaling impedes microglial M1 polarization and facilitates brain tumorigenesis. Oncogene 35, 6246–6261 (2016).

    Article  CAS  Google Scholar 

  38. Leng, L. et al. MIF signal transduction initiated by binding to CD74. J. Exp. Med. 197, 1467–1476 (2003).

    Article  CAS  Google Scholar 

  39. Becker-Herman, S., Arie, G., Medvedovsky, H., Kerem, A. & Shachar, I. CD74 is a member of the regulated intramembrane proteolysis-processed protein family. Mol. Biol. Cell 16, 5061–5069 (2005).

    Article  CAS  Google Scholar 

  40. Gil-Yarom, N. et al. CD74 is a novel transcription regulator. Proc. Natl Acad. Sci. USA 114, 562–567 (2017).

    Article  CAS  Google Scholar 

  41. Cohen, S. et al. The cytokine midkine and its receptor RPTPζ regulate B cell survival in a pathway induced by CD74. J. Immunol. 188, 259–269 (2012).

    Article  CAS  Google Scholar 

  42. Nguyen, D. X. et al. WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell 138, 51–62 (2009).

    Article  CAS  Google Scholar 

  43. Cho, Y. et al. Allosteric inhibition of macrophage migration inhibitory factor revealed by ibudilast. Proc. Natl Acad. Sci. USA 107, 11313–11318 (2010).

    Article  CAS  Google Scholar 

  44. Bosch-Barrera, J. et al. Response of brain metastasis from lung cancer patients to an oral nutraceutical product containing silibinin. Oncotarget 7, 32006–32014 (2016).

    Article  Google Scholar 

  45. Lee, Y., Park, H. R., Chun, H. J. & Lee, J. Silibinin prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease via mitochondrial stabilization. J. Neurosci. Res. 93, 755–765 (2015).

    Article  CAS  Google Scholar 

  46. Bosch-Barrera, J. & Menendez, J. A. Silibinin and STAT3: a natural way of targeting transcription factors for cancer therapy. Cancer Treat. Rev. 41, 540–546 (2015).

    Article  CAS  Google Scholar 

  47. Bromberg, J. F. et al. Stat3 as an oncogene. Cell 98, 295–303 (1999).

    Article  CAS  Google Scholar 

  48. Sperduto, P. W. et al. Estimating survival in patients with lung cancer and brain metastases: an update of the graded prognostic assessment for lung cancer using molecular markers (Lung-molGPA). JAMA Oncol. 3, 827–831 (2017).

    Article  Google Scholar 

  49. Kumthekar, P. et al. Pharmacokinetics and efficacy of pemetrexed in patients with brain or leptomeningeal metastases. J. Neurooncol. 112, 247–255 (2013).

    Article  CAS  Google Scholar 

  50. Brastianos, P. K. et al. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov. 5, 1164–1177 (2015).

    Article  CAS  Google Scholar 

  51. Paik, P. K. et al. Next-generation sequencing of stage IV squamous cell lung cancers reveals an association of PI3K aberrations and evidence of clonal heterogeneity in patients with brain metastases. Cancer Discov. 5, 610–621 (2015).

    Article  CAS  Google Scholar 

  52. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e17 (2017).

    Article  CAS  Google Scholar 

  53. Masgrau, R., Guaza, C., Ransohoff, R. M. & Galea, E. Should we stop saying “glia” and “neuroinflammation”? Trends Mol. Med. 23, 486–500 (2017).

    Article  CAS  Google Scholar 

  54. Zhang, L. et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 527, 100–104 (2015).

    Article  CAS  Google Scholar 

  55. Kim, S.-J. et al. Macitentan, a dual endothelin receptor antagonist, in combination with temozolomide leads to glioblastoma regression and long-term survival in mice. Clin. Cancer Res. 21, 4630–4641 (2015).

    Article  CAS  Google Scholar 

  56. Neman, J. et al. Human breast cancer metastases to the brain display GABAergic properties in the neural niche. Proc. Natl Acad. Sci. USA 111, 984–989 (2014).

    Article  CAS  Google Scholar 

  57. Louie, E. et al. Neurotrophin-3 modulates breast cancer cells and the microenvironment to promote the growth of breast cancer brain metastasis. Oncogene 32, 4064–4077 (2013).

    Article  CAS  Google Scholar 

  58. Lyle, L. T. et al. Alterations in pericyte subpopulations are associated with elevated blood–tumor barrier permeability in experimental brain metastasis of breast cancer. Clin. Cancer Res. 22, 5287–5299 (2016).

    Article  CAS  Google Scholar 

  59. Schwartz, H. et al. Incipient melanoma brain metastases instigate astrogliosis and neuroinflammation. Cancer Res. 76, 4359–4371 (2016).

    Article  CAS  Google Scholar 

  60. Valiente, M. et al. The evolving landscape of brain metastasis. Trends Cancer 4, 176–196 (2018).

    Article  Google Scholar 

  61. Bos, P. D. et al. Genes that mediate breast cancer metastasis to the brain. Nature 459, 1005–1009 (2009).

    Article  CAS  Google Scholar 

  62. Malladi, S. et al. Metastatic latency and immune evasion through autocrine inhibition of WNT. Cell 165, 45–60 (2016).

    Article  CAS  Google Scholar 

  63. Campeau, E. et al. A versatile viral system for expression and depletion of proteins in mammalian cells. PLoS ONE 4, e6529 (2009).

    Article  Google Scholar 

  64. Schildge, S., Bohrer, C., Beck, K. & Schachtrup, C. Isolation and culture of mouse cortical astrocytes. J. Vis. Exp. 71, 50079 (2013).

  65. Hillion, J. et al. The high-mobility group A1a/signal transducer and activator of transcription-3 axis: an achilles heel for hematopoietic malignancies? Cancer Res. 68, 10121–10127 (2008).

    Article  CAS  Google Scholar 

  66. Lin, N. U. et al. Response assessment criteria for brain metastases: proposal from the RANO group. Lancet Oncol. 16, e270–e278 (2015).

    Article  Google Scholar 

  67. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We want to thank the CNIO Core Facilities for their excellent assistance. We also thank F.X. Real, O. Marín, M. Serrano, O. Fernandez-Capetillo and M. Soengas for critically reading the manuscript, P. Bos for advice with CD8+ T cell experiments, J. Massagué (MSKCC) for the BrM cell lines, MEDA for Legasil, M. A. Pérez (University of Copenhagen), H. Peinado (CNIO), M. Soengas (CNIO) and M. Squatrito (CNIO) for reagents. This work was supported by MINECO grants MINECO-Retos SAF2014-57243-R (M.V.), MINECO-Europa Excelencia SAF2015-62547-ERC (M.V.), FERO Grant for Research in Oncology (M.V.), Melanoma Research Alliance Young Investigator Award (M.V.), AECC Coordinated Translational Groups (M.V., E.M.-S. and S.R.y.C), SEOM (J.B.-B.), Pfizer WI190764 (J.B.-B.), Meda Pharma (J.B.-B.), Armangué Family Fund (J.A.M. and J.B.-B.), La Caixa-Severo Ochoa International PhD Program Fellowship (L.Z.), FCT PhD Fellowship SFRH/BD/100089/2014 (C.M.), the Fulbright Program (W.B.). M.V. is a Ramón y Cajal Investigator (RYC-2013-13365). This work is dedicated to the memory of María Jesús Cortés Garín.

Author information

Authors and Affiliations

Authors

Contributions

N.P. and M.V. designed and performed the experiments, analyzed the data and wrote the manuscript. L.Z., C.M., M.M., D.W., W.B., L.D. and Liliana M. performed the experiments and analyzed the data. E.H.-E., C.B.-A. and L.Z. performed the pharmacokinetic experiments and analyzed the data. E.Z., J.M. and N.P. performed the proteomic experiments and analyzed the data. C.F.-T. and E.P. performed the bioinformatics analysis. V.P. provided the Stat3loxP/loxP mice. M.S.-M. and J.A.M. performed the in silico modeling. J.B.-B. performed the clinical study with Legasil. E.M.-S., S.R.y.C., A.H.-L., L.B. and R.S. provided the human samples and determined suitability for study. E.M.-S. scored the human samples. D.M. provided technical support with microscopy. Lola M. provided technical support with flow cytometry.

Corresponding author

Correspondence to Manuel Valiente.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1–6

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priego, N., Zhu, L., Monteiro, C. et al. STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis. Nat Med 24, 1024–1035 (2018). https://doi.org/10.1038/s41591-018-0044-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-018-0044-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing