Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A strategy for treatment of Epstein–Barr virus-positive Hodgkin's disease by targeting interleukin 12 to the tumor environment using tumor antigen-specific T cells

Abstract

Adoptive immunotherapy with Epstein–Barr virus (EBV)-specific cytotoxic T cells (CTL) is effective for the prophylaxis and treatment of EBV-induced lymphoma in hematopoietic stem cell recipients. However, in EBV-positive Hodgkin's disease (HD) the efficacy of adoptively transferred EBV-specific CTL may be limited by tumor-derived immunosuppressive factors, such as T-cell growth factor (TGF) β, interleukin (IL)13 and the chemokine TARC. Local delivery of IL12 to tumor sites by tumor-specific CTL could provide direct antitumor effects and overcome the CTL-inhibitory effects of the Th2 tumor environment while avoiding the systemic toxicity of recombinant IL12. EBV-specific CTL transduced with a retrovirus vector expressing the p40 and p35 subunits of IL12 as a single molecule (Flexi-IL12), produced IL12 following antigenic stimulation. This resulted in an elevated production of Th1 cytokines, including interferon γ and tumor necrosis factor α, and a reduction in the Th2 cytokines IL4 and IL5. Flexi-IL12-transduced CTL resisted the antiproliferative and anticytotoxic effects of exogenous TGFβ, likely by antagonizing the TGFβ-induced downregulation of the Th1 transcriptional factor T-bet. In addition, Flexi-IL12-transduced CTL demonstrated a proliferative advantage in the presence of inhibitory supernatants from HD-derived cell lines. Tumor-specific, Flexi-IL12-transduced EBV-specific CTL should have a functional advantage over unmodified CTL, particularly in the presence of the adverse Th2 cytokine environment produced by Hodgkin tumor cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Riddell SR, Greenberg PD . Principles for adoptive T cell therapy of human viral diseases. Annu Rev Immunol. 1995;13:545–586.

    Article  CAS  PubMed  Google Scholar 

  2. Rooney CM, Aguilar LK, Huls MH, Brenner MK, Heslop HE . Adoptive immunotherapy of EBV-associated malignancies with EBV-specific cytotoxic T-cell lines. Curr Top Microbiol Immunol. 2001;258:221–229.

    CAS  PubMed  Google Scholar 

  3. Perez-Diez A, Marincola FM . Immunotherapy against antigenic tumors: a game with a lot of players. Cell Mol Life Sci. 2002;59:230–240.

    Article  CAS  PubMed  Google Scholar 

  4. Poppema S, van den Berg A . Interaction between host T cells and Reed-Sternberg cells in Hodgkin lymphomas. Semin Cancer Biol. 2000;10:345–350.

    Article  CAS  PubMed  Google Scholar 

  5. Nestle FO . Dendritic cell vaccination for cancer therapy. Oncogene. 2000;19:6673–6679.

    Article  CAS  PubMed  Google Scholar 

  6. Mosmann TR, Li L, Sad S . Functions of CD8 T-cell subsets secreting different cytokine patterns. Semin Immunol. 1997;9:87–92.

    Article  CAS  PubMed  Google Scholar 

  7. Dong C, Flavell RA . Th1 and Th2 cells. Curr Opin Hematol. 2001;8:47.

    Article  CAS  PubMed  Google Scholar 

  8. Kobayashi M, Fitz L, Ryan M, et al. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med. 1989;170:827–845.

    Article  CAS  PubMed  Google Scholar 

  9. Stern AS, Podlaski FJ, Hulmes JD, et al. Purification to homogeneity and partial characterization of cytotoxic lymphocyte maturation factor from human B-lymphoblastoid cells. Proc Natl Acad Sci USA. 1990;87:6808–6812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Banks RE, Patel PM, Selby PJ . Interleukin 12: a new clinical player in cytokine therapy. Br J Cancer. 1995;71:655–659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Voest EE, Kenyon BM, O'Reilly MS, Truitt G, D'Amato RJ, Folkman J . Inhibition of angiogenesis in vivo by interleukin 12. J Natl Cancer Inst. 1995;87:581–586.

    Article  CAS  PubMed  Google Scholar 

  12. Leonard JP, Sherman ML, Fisher GL, et al. Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-gamma production. Blood. 1997;90:2541–2548.

    CAS  PubMed  Google Scholar 

  13. Herbst H, Dallenback F, Hummel M, et al. Epstein–Barr virus latent membrane protein expression in Hodgkin and Reed-Sternberg cells. Proc Natl Acad Aci USA. 1991;88:4766–4770.

    Article  CAS  Google Scholar 

  14. Roskrow MA, Suzuki N, Gan Y-J, et al. EBV-specific cytotoxic T lymphocytes for the treatment of patients with EBV positive relapsed Hodgkin's disease. Blood. 1998;91:2925–2934.

    CAS  PubMed  Google Scholar 

  15. Newcom SR, Gu L . Transforming growth factor beta 1 messenger RNA in Reed-Sternberg cells in nodular sclerosing Hodgkin's disease. J Clin Pathol. 1995;48:160–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Skinnider BF, Elia AJ, Gascoyne RD, et al. Interleukin 13 and interleukin 13 receptor are frequently expressed by Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood. 2001;97:250–255.

    Article  CAS  PubMed  Google Scholar 

  17. Peh SC, Kim LH, Poppema S . TARC, a CC chemokine, is frequently expressed in classic Hodgkin's lymphoma but not in NLP Hodgkin's lymphoma, T-cell-rich B-cell lymphoma, and most cases of anaplastic large cell lymphoma. Am J Surg Pathol. 2001;25:925–929.

    Article  CAS  PubMed  Google Scholar 

  18. Bramson JL, Hitt M, Addison CL, Muller WJ, Gauldie J, Graham FL . Direct intratumoral injection of an adenovirus expressing interleukin-12 induces regression and long-lasting immunity that is associated with highly localized expression of interleukin-12. Hum Gene Ther. 1996;7:1995–2002.

    Article  CAS  PubMed  Google Scholar 

  19. Wolf J, Kapp U, Bohlen H, et al. Peripheral blood mononuclear cells of a patient with advanced Hodgkin's lymphoma give rise to permanently growing Hodgkin–Reed Sternberg cells. Blood. 1996;87:3418–3428.

    CAS  PubMed  Google Scholar 

  20. Drexler HG, Gaedicke G, Lok MS, Diehl V, Minowada J . Hodgkin's disease derived cell lines HDLM-2 and L-428: comparison of morphology, immunological and isoenzyme profiles. Leuk Res. 1986;10:487–500.

    Article  CAS  PubMed  Google Scholar 

  21. Anderson R, Macdonald I, Corbett T, Hacking G, Lowdell MW, Prentice HG . Construction and biological characterization of an interleukin-12 fusion protein (Flexi-12): delivery to acute myeloid leukemic blasts using adeno-associated virus. Hum Gene Ther. 1997;8:1125–1135.

    Article  CAS  PubMed  Google Scholar 

  22. Riviere I, Brose K, Mulligan RC . Effects of retroviral vector design on expression of human adenosine deaminase in murine bone marrow transplant recipients engrafted with genetically modified cells. Proc Natl Acad Sci USA. 1995;92:6733–6737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rossig C, Bollard CM, Nuchtern JG, Rooney CM, Brenner MK . Epstein–Barr virus-specific human T lymphocytes expressing antitumor chimeric T-cell receptors: potential for improved immunotherapy. Blood. 2002;99:2009–2016.

    Article  CAS  PubMed  Google Scholar 

  24. Bollard CM, Rossig C, Calonge MJ, et al. Adapting a transforming growth factor beta-related tumor protection strategy to enhance antitumor immunity. Blood. 2002;99:3179–3187.

    Article  CAS  PubMed  Google Scholar 

  25. Jin Y, Fuller L, Carreno M, Esquenazi V, Tzakis AG, Miller J . The regulation of phenotype and function of human liver CD3+/CD56+ lymphocytes, and cells that also co-express CD8 by IL-2, IL-12 and anti-CD3 monoclonal antibody. Hum Immunol. 1998;59:352–362.

    Article  CAS  PubMed  Google Scholar 

  26. Jabs WJ, Hennig H, Kittel M, et al. Normalized quantification by real-time PCR of Epstein–Barr virus load in patients at risk for posttransplant lymphoproliferative disorders. J Clin Microbiol. 2001;39:564–569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–408.

    Article  CAS  PubMed  Google Scholar 

  28. Lee SP, Tierney RJ, Thomas WA, Brooks JM, Rickinson AB . Conserved CTL epitopes within EBV latent membrane protein 2: a potential target for CTL-based tumor therapy. J Immunol. 1997;158:3325–3334.

    CAS  PubMed  Google Scholar 

  29. Pollok KE, van der Loo JC, Cooper RJ, Kennedy L, Williams DA . Costimulation of transduced T lymphocytes via T cell receptor–CD3 complex and CD28 leads to increased transcription of integrated retrovirus. Hum Gene Ther. 1999;10:2221–2236.

    Article  CAS  PubMed  Google Scholar 

  30. Gorelik L, Constant S, Flavell RA . Mechanism of transforming growth factor beta-induced inhibition of T helper type 1 differentiation. J Exp Med. 2002;195:1499–1505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kemp RA, Ronchese F . Tumor-specific Tc1, but not Tc2, cells deliver protective antitumor immunity. J Immunol. 2001;167:6497–6502.

    Article  CAS  PubMed  Google Scholar 

  32. Stewart JP, Rooney CM . The interleukin-10 homolog encoded by Epstein–Barr virus enhances the reactivation of virus-specific cytotoxic T cell and HLA-unrestricted killer cell responses. Virology. 1992;191:773–782.

    Article  CAS  PubMed  Google Scholar 

  33. Santin AD, Hermonat PL, Ravaggi A, et al. Interleukin-10 increases Th1 cytokine production and cytotoxic potential in human papillomavirus-specific CD8(+) cytotoxic T lymphocytes. J Virol. 2000;74:4729–4737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Colombo MP, Trinchieri G . Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev. 2002;13:155–168.

    Article  CAS  PubMed  Google Scholar 

  35. Kang WK, Park C, Yoon HL, et al. Interleukin 12 gene therapy of cancer by peritumoral injection of transduced autologous fibroblasts: outcome of a phase I study. Hum Gene Ther. 2001;12:671–684.

    Article  CAS  PubMed  Google Scholar 

  36. Harries M, Phillipps N, Anderson R, Prentice G, Collins M . Comparison of bicistronic retroviral vectors containing internal ribosome entry sites (IRES) using expression of human interleukin-12 (IL-12) as a readout. J Gene Med. 2000;2:243–249.

    Article  CAS  PubMed  Google Scholar 

  37. Chapman AL, Rickinson AB, Thomas WA, Jarrett RF, Crocker J, Lee SP . Epstein–Barr virus-specific cytotoxic T lymphocyte responses in the blood and tumor site of Hodgkin's disease patients: implications for a T-cell-based therapy. Cancer Res. 2001;61:6219–6226.

    CAS  PubMed  Google Scholar 

  38. Smits HH, van Rietschoten JG, Hilkens CM, et al. IL-12-induced reversal of human Th2 cells is accompanied by full restoration of IL-12 responsiveness and loss of GATA-3 expression. Eur J Immunol. 2001;31:1055–1065.

    Article  CAS  PubMed  Google Scholar 

  39. Sudarshan C, Galon J, Zhou Y, O'Shea JJ . TGF-beta does not inhibit IL-12- and IL-2-induced activation of Janus kinases and STATs. J Immunol. 1999;162:2974–2981.

    CAS  PubMed  Google Scholar 

  40. Xu J, Menezes J, Prasad U, Ahmad A . Elevated serum levels of transforming growth factor beta 1 in Epstein–Barr virus-associated nasopharyngeal carcinoma patients. Int J Cancer. 1999;84:396–399.

    Article  CAS  PubMed  Google Scholar 

  41. Maggi E, Manetti R, Annunziato F, Romagnani S . CD8+ T lymphocytes producing Th2-type cytokines (Tc2) in HIV-infected individuals. J Biol Regul Homeost Agents. 1995;9:78–81.

    CAS  PubMed  Google Scholar 

  42. Kinsella TM, Nolan GP . Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum Gene Ther. 1996;7:1405–1413.

    Article  CAS  PubMed  Google Scholar 

  43. Rickinson AB, Moss DJ, Allen DJ, Wallace LE, Rowe M, Epstein MA . Reactivation of Epstein–Barr virus-specific cytotoxic T cells by in vitro stimulation with the autologous lymphoblastoid cell line. Int J Cancer. 1981;27:593–601.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the “Deutsche Forschungsgemeinschaft” to HJW (WA 1149/2-1), a grant from the “Association pour la Recherche sur le Cancer (ARC), France” to SV, a Translational Research Grant (# 6104-02) from the Leukemia and Lymphoma Society of America to CMR, POI CA94237 from the National Institutes of Health, a Distinguished Clinical Scientist Award from the Doris Duke Foundation to HEH and by the Center for Cell and Gene Therapy, Baylor College of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cliona M Rooney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, HJ., Bollard, C., Vigouroux, S. et al. A strategy for treatment of Epstein–Barr virus-positive Hodgkin's disease by targeting interleukin 12 to the tumor environment using tumor antigen-specific T cells. Cancer Gene Ther 11, 81–91 (2004). https://doi.org/10.1038/sj.cgt.7700664

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700664

Keywords

This article is cited by

Search

Quick links