Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

mRNA-based cancer vaccine: prevention of B16 melanoma progression and metastasis by systemic injection of MART1 mRNA histidylated lipopolyplexes

Abstract

Immunization with mRNA encoding tumor antigen is an emerging vaccine strategy for cancer. In this paper, we demonstrate that mice receiving systemic injections of MART1 mRNA histidylated lipopolyplexes were specifically and significantly protected against B16F10 melanoma tumor progression. The originality of this work concerns the use of a new tumor antigen mRNA formulation as vaccine, which allows an efficient protection against the growth of a highly aggressive tumor model after its delivery by intravenous route. Synthetic melanoma-associated antigen MART1 mRNA was formulated with a polyethylene glycol (PEG)ylated derivative of histidylated polylysine and L-histidine-(N,N-di-n-hexadecylamine)ethylamide liposomes (termed histidylated lipopolyplexes). Lipopolyplexes comprised mRNA/polymer complexes encapsulated by liposomes. The tumor protective effect was induced with MART1 mRNA carrying a poly(A) tail length of 100 adenosines at an optimal dose of 12.5 μg per mouse. MART1 mRNA lipopolyplexes elicited a cellular immune response characterized by the production of interferon-γ and the induction of cytotoxic T lymphocytes. Finally, the anti-B16 response was enhanced using a formulation containing both MART1 mRNA and MART1-LAMP1 mRNA encoding the antigen targeted to the major histocompatibility complex class II compartments by the lysosomal sorting signal of LAMP1 protein. Our results provide a basis for the development of mRNA histidylated lipopolyplexes for cancer vaccine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Donnelly JJ, Wahren B, Liu MA . DNA vaccines: progress and challenges. J Immunol 2005; 175: 633–639.

    Article  CAS  PubMed  Google Scholar 

  2. Banchereau J, Palucka AK . Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 2005; 5: 296–306.

    Article  CAS  PubMed  Google Scholar 

  3. Cui Z . DNA vaccine. Adv Genet 2005; 54: 257–289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kikuchi T . Genetically modified dendritic cells for therapeutic immunity. Tohoku J Exp Med 2006; 208: 1–2088.

    Article  CAS  PubMed  Google Scholar 

  5. Ribas A . Genetically modified dendritic cells for cancer immunotherapy. Curr Gene Ther 2005; 5: 619–628.

    Article  CAS  PubMed  Google Scholar 

  6. Toes RE, Ossendorp F, Offringa R, Melief CJ . CD4T cells and their role in antitumor immune responses. J Exp Med 1999; 189: 753–756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gilboa E, Vieweg J . Cancer immunotherapy with mRNA-transfected dendritic cells. Immunol Rev 2004; 199: 251–263.

    Article  CAS  PubMed  Google Scholar 

  8. Gilboa E . The promise of cancer vaccines. Nat Rev Cancer 2004; 4: 401–411.

    Article  CAS  PubMed  Google Scholar 

  9. Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A et al. Direct gene transfer into mouse muscle in vivo. Science 1990; 247: 1465–1468.

    Article  CAS  PubMed  Google Scholar 

  10. Conry RM, LoBuglio AF, Wright M, Sumerel L, Pike MJ, Johanning F et al. Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Res 1995; 55: 1397–1400.

    CAS  PubMed  Google Scholar 

  11. Carralot JP, Probst J, Hoerr I, Scheel B, Teufel R, Jung G et al. Polarization of immunity induced by direct injection of naked sequence-stabilized mRNA vaccines. Cell Mol Life Sci 2004; 61: 2418–2424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Johanning FW, Conry RM, LoBuglio AF, Wright M, Sumerel LA, Pike MJ et al. A Sindbis virus mRNA polynucleotide vector achieves prolonged and high level heterologous gene expression in vivo. Nucleic Acids Res 1995; 23: 1495–1501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hoerr I, Obst R, Rammensee HG, Jung G . In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur J Immunol 2000; 30: 1–7.

    Article  CAS  PubMed  Google Scholar 

  14. Steitz J, Britten CM, Wolfel T, Tuting T . Effective induction of anti-melanoma immunity following genetic vaccination with synthetic mRNA coding for the fusion protein EGFP.TRP2. Cancer Immunol Immunother 2006; 55: 246–253.

    Article  CAS  PubMed  Google Scholar 

  15. Pichon C, Goncalves C, Midoux P . Histidine-rich peptides and polymers for nucleic acids delivery. Adv Drug Deliv Rev 2001; 53: 75–94.

    Article  CAS  PubMed  Google Scholar 

  16. Kumar VV, Pichon C, Refregiers M, Guerin B, Midoux P, Chaudhuri A . Single histidine residue in head-group region is sufficient to impart remarkable gene transfection properties to cationic lipids: evidence for histidine-mediated membrane fusion at acidic pH. Gene Ther 2003; 10: 1206–1215.

    Article  CAS  PubMed  Google Scholar 

  17. Singh RS, Goncalves C, Sandrin P, Pichon C, Midoux P, Chaudhuri A . On the gene delivery efficacies of pH-sensitive cationic lipids via endosomal protonation: a chemical biology investigation. Chem Biol 2004; 11: 713–723.

    Article  CAS  PubMed  Google Scholar 

  18. Mockey M, Goncalves C, Dupuy FP, Lemoine FM, Pichon C, Midoux P . mRNA transfection of dendritic cells: synergistic effect of ARCA mRNA capping with Poly(A) chains in cis and in trans for a high protein expression level. Biochem Biophys Res Commun 2006; 340: 1062–1068.

    Article  CAS  PubMed  Google Scholar 

  19. Zhai Y, Yang JC, Spiess P, Nishimura MI, Overwijk WW, Roberts B et al. Cloning and characterization of the genes encoding the murine homologues of the human melanoma antigens MART1 and gp100. J Immunother 1997; 20: 15–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ribas A, Butterfield LH, McBride WH, Jilani SM, Bui LA, Vollmer CM et al. Genetic immunization for the melanoma antigen MART-1/Melan-A using recombinant adenovirus-transduced murine dendritic cells. Cancer Res 1997; 57: 2865–2869.

    CAS  PubMed  Google Scholar 

  21. Ribas A, Butterfield LH, Hu B, Dissette VB, Chen AY, Koh A et al. Generation of T-cell immunity to a murine melanoma using MART-1-engineered dendritic cells. J Immunother 2000; 23: 59–66.

    Article  CAS  PubMed  Google Scholar 

  22. Broder H, Anderson A, Kremen TJ, Odesa SK, Liau LM . MART-1 adenovirus-transduced dendritic cell immunization in a murine model of metastatic central nervous system tumor. J Neurooncol 2003; 64: 21–30.

    PubMed  Google Scholar 

  23. Tuyaerts S, Michiels A, Corthals J, Bonehill A, Heirman C, de Greef C et al. Induction of influenza matrix protein 1 and MelanA-specific T lymphocytes in vitro using mRNA-electroporated dendritic cells. Cancer Gene Ther 2003; 10: 696–706.

    Article  CAS  PubMed  Google Scholar 

  24. Fukuda M, Viitala J, Matteson J, Carlsson SR . Cloning of cDNAs encoding human lysosomal membrane glycoproteins, h-lamp-1 and h-lamp-2. Comparison of their deduced amino acid sequences. J Biol Chem 1988; 263: 18920–18928.

    CAS  PubMed  Google Scholar 

  25. Granger BL, Green SA, Gabel CA, Howe CL, Mellman I, Helenius A . Characterization and cloning of lgp110, a lysosomal membrane glycoprotein from mouse and rat cells. J Biol Chem 1990; 265: 12036–12043.

    CAS  PubMed  Google Scholar 

  26. Midoux P, Monsigny M . Efficient gene transfer by histidylated polylysine/pDNA complexes. Bioconjug Chem 1999; 10: 406–411.

    Article  CAS  PubMed  Google Scholar 

  27. Le Cam E, Coulaud D, Delain E, Petitjean P, Roques BP, Gerard D et al. Properties and growth mechanism of the ordered aggregation of a model RNA by the HIV-1 nucleocapsid protein: an electron microscopy investigation. Biopolymers 1998; 45: 217–229.

    Article  CAS  PubMed  Google Scholar 

  28. Holtkamp S, Kreiter S, Selmi A, Simon P, Koslowski M, Huber C et al. Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 2006; 108: 4009–4017.

    Article  CAS  PubMed  Google Scholar 

  29. Rimoldi D, Muehlethaler K, Salvi S, Valmori D, Romero P, Cerottini JC et al. Subcellular localization of the melanoma-associated protein Melan-AMART-1 influences the processing of its HLA-A2-restricted epitope. J Biol Chem 2001; 276: 43189–43196.

    Article  CAS  PubMed  Google Scholar 

  30. Zhou WZ, Hoon DS, Huang SK, Fujii S, Hashimoto K, Morishita R et al. RNA melanoma vaccine: induction of antitumor immunity by human glycoprotein 100 mRNA immunization. Hum Gene Ther 1999; 10: 2719–2724.

    Article  CAS  PubMed  Google Scholar 

  31. Ogris M, Brunner S, Schuller S, Kircheis R, Wagner E . PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther 1999; 6: 595–605.

    Article  CAS  PubMed  Google Scholar 

  32. Lee RJ, Huang L . Folate-targeted, anionic liposome-entrapped polylysine-condensed DNA for tumor cell-specific gene transfer. J Biol Chem 1996; 271: 8481–8487.

    Article  CAS  PubMed  Google Scholar 

  33. Li S, Rizzo MA, Bhattacharya S, Huang L . Characterization of cationic lipid–protamine–DNA (LPD) complexes for intravenous gene delivery. Gene Ther 1998; 5: 930–937.

    Article  CAS  PubMed  Google Scholar 

  34. Martinon F, Krishnan S, Lenzen G, Magne R, Gomard E, Guillet JG et al. Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur J Immunol 1993; 23: 1719–1722.

    Article  CAS  PubMed  Google Scholar 

  35. Hess PR, Boczkowski D, Nair SK, Snyder D, Gilboa E . Vaccination with mRNAs encoding tumor-associated antigens and granulocyte-macrophage colony-stimulating factor efficiently primes CTL responses, but is insufficient to overcome tolerance to a model tumor/self antigen. Cancer Immunol Immunother 2006; 55: 672–683.

    Article  CAS  PubMed  Google Scholar 

  36. Dileo J, Banerjee R, Whitmore M, Nayak JV, Falo Jr LD, Huang L . Lipid–protamine–DNA-mediated antigen delivery to antigen-presenting cells results in enhanced anti-tumor immune responses. Mol Ther 2003; 7: 640–648.

    Article  CAS  PubMed  Google Scholar 

  37. Salio M, Cella M, Vermi W, Facchetti F, Palmowski MJ, Smith CL et al. Plasmacytoid dendritic cells prime IFN-gamma-secreting melanoma-specific CD8 lymphocytes and are found in primary melanoma lesions. Eur J Immunol 2003; 33: 1052–1062.

    Article  CAS  PubMed  Google Scholar 

  38. Colonna M, Trinchieri G, Liu YJ . Plasmacytoid dendritic cells in immunity. Nat Immunol 2004; 5: 1219–1226.

    Article  CAS  PubMed  Google Scholar 

  39. Malone RW, Felgner PL, Verma IM . Cationic liposome-mediated RNA transfection. Proc Natl Acad Sci USA 1989; 86: 6077–6081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee J, Chuang TH, Redecke V, She L, Pitha PM, Carson DA et al. Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: activation of Toll-like receptor 7. Proc Natl Acad Sci USA 2003; 100: 6646–6651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004; 303: 1526–1529.

    Article  CAS  PubMed  Google Scholar 

  42. Scheel B, Teufel R, Probst J, Carralot JP, Geginat J, Radsak M et al. Toll-like receptor-dependent activation of several human blood cell types by protamine-condensed mRNA. Eur J Immunol 2005; 35: 1557–1566.

    Article  CAS  PubMed  Google Scholar 

  43. Ceppi M, Ruggli N, Tache V, Gerber H, McCullough KC, Summerfield A . Double-stranded secondary structures on mRNA induce type I interferon (IFN alpha/beta) production and maturation of mRNA-transfected monocyte-derived dendritic cells. J Gene Med 2005; 7: 452–465.

    Article  CAS  PubMed  Google Scholar 

  44. Kariko K, Ni H, Capodici J, Lamphier M, Weissman D . mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem 2004; 279: 12542–12550.

    Article  CAS  PubMed  Google Scholar 

  45. Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C . Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 2004; 303: 1529–1531.

    Article  CAS  PubMed  Google Scholar 

  46. Nussbaum JM, Gunnery S, Mathews MB . The 3′-untranslated regions of cytoskeletal muscle mRNAs inhibit translation by activating the double-stranded RNA-dependent protein kinase PKR. Nucleic Acids Res 2002; 30: 1205–1212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bennett SR, Carbone FR, Karamalis F, Miller JF, Heath WR . Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. J Exp Med 1997; 186: 65–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fayolle C, Deriaud E, Leclerc C . In vivo induction of cytotoxic T cell response by a free synthetic peptide requires CD4+ T cell help. J Immunol 1991; 147: 4069–4073.

    CAS  PubMed  Google Scholar 

  49. Serre K, Giraudo L, Siret C, Leserman L, Machy P . CD4 T cell help is required for primary CD8 T cell responses to vesicular antigen delivered to dendritic cells in vivo. Eur J Immunol 2006; 36: 1386–1397.

    Article  CAS  PubMed  Google Scholar 

  50. Perez-Diez A, Butterfield LH, Li L, Chakraborty NG, Economou JS, Mukherji B . Generation of CD8+ and CD4+ T-cell response to dendritic cells genetically engineered to express the MART-1/Melan-A gene. Cancer Res 1998; 58: 5305–5309.

    CAS  PubMed  Google Scholar 

  51. Zarour HM, Kirkwood JM, Kierstead LS, Herr W, Brusic V, Slingluff Jr CL et al. Melan-A/MART-1(51-73) represents an immunogenic HLA-DR4-restricted epitope recognized by melanoma-reactive CD4(+) T cells. Proc Natl Acad Sci USA 2000; 97: 400–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Larrieu P, Ouisse LH, Guilloux Y, Jotereau F, Fonteneau JF . A HLA-DQ5 restricted Melan-A/MART-1 epitope presented by melanoma tumor cells to CD4+ T lymphocytes. Cancer Immunol Immunother 2007 February 23 (E-pub ahead of Print).

  53. Bonehill A, Heirman C, Tuyaerts S, Michiels A, Breckpot K, Brasseur F et al. Messenger RNA-electroporated dendritic cells presenting MAGE-A3 simultaneously in HLA class I and class II molecules. J Immunol 2004; 172: 6649–6657.

    Article  CAS  PubMed  Google Scholar 

  54. Bonehill A, Heirman C, Thielemans K . Genetic approaches for the induction of a CD4+ T cell response in cancer immunotherapy. J Gene Med 2005; 7: 686–695.

    Article  CAS  PubMed  Google Scholar 

  55. Nair SK, Boczkowski D, Morse M, Cumming RI, Lyerly HK, Gilboa E . Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nat Biotechnol 1998; 16: 364–369.

    Article  CAS  PubMed  Google Scholar 

  56. Ji H, Wang TL, Chen CH, Pai SI, Hung CF, Lin KY et al. Targeting human papillomavirus type 16 E7 to the endosomal/lysosomal compartment enhances the antitumor immunity of DNA vaccines against murine human papillomavirus type 16 E7-expressing tumors. Hum Gene Ther 1999; 10: 2727–2740.

    Article  CAS  PubMed  Google Scholar 

  57. Kim TG, Kim CH, Won EH, Bae SM, Ahn WS, Park JB et al. CpG-ODN-stimulated dendritic cells act as a potent adjuvant for E7 protein delivery to induce antigen-specific antitumour immunity in a HPV 16 E7-associated animal tumour model. Immunology 2004; 112: 117–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim MS, Sin JI . Both antigen optimization and lysosomal targeting are required for enhanced anti-tumour protective immunity in a human papillomavirus E7-expressing animal tumour model. Immunology 2005; 116: 255–266.

    Article  CAS  PubMed  Google Scholar 

  59. Su Z, Dannull J, Yang BK, Dahm P, Coleman D, Yancey D et al. Telomerase mRNA-transfected dendritic cells stimulate antigen-specific CD8+ and CD4+ T cell responses in patients with metastatic prostate cancer. J Immunol 2005; 174: 3798–3807.

    Article  CAS  PubMed  Google Scholar 

  60. Scheel B, Aulwurm S, Probst J, Stitz L, Hoerr I, Rammensee HG et al. Therapeutic anti-tumor immunity triggered by injections of immunostimulating single-stranded RNA. Eur J Immunol 2006; 36: 2807–2816.

    Article  CAS  PubMed  Google Scholar 

  61. Adams M, Navabi H, Croston D, Coleman S, Tabi Z, Clayton A et al. The rationale for combined chemo/immunotherapy using a Toll-like receptor 3 (TLR3) agonist and tumour-derived exosomes in advanced ovarian cancer. Vaccine 2005; 23: 2374–2378.

    Article  CAS  PubMed  Google Scholar 

  62. Mason KA, Ariga H, Neal R, Valdecanas D, Hunter N, Krieg A et al. Targeting toll-like receptor 9 with CpG oligodeoxynucleotides enhances tumor response to fractionated radiotherapy. Clin Cancer Res 2005; 11: 361–369.

    CAS  PubMed  Google Scholar 

  63. Zaks K, Jordan M, Guth A, Sellins K, Kedl R, Izzo A et al. Efficient immunization and cross-priming by vaccine adjuvants containing TLR3 or TLR9 agonists complexed to cationic liposomes. J Immunol 2006; 176: 7335–7345.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to A Bonehill, K Thielemans and Van den Eynde for the kind gift of the pGEM4Z-MART1-A64 and pCMV-MART1 plasmids. We thank warmly I Mercier-Maillet2 and L Janot2 for the excellent technical assistance and advice. This work was supported by grants from Ligue Nationale contre le Cancer (Région Centre) and Canceropole Grand Ouest. MM was a recipient of a fellowship from Ministère de la recherche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Midoux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mockey, M., Bourseau, E., Chandrashekhar, V. et al. mRNA-based cancer vaccine: prevention of B16 melanoma progression and metastasis by systemic injection of MART1 mRNA histidylated lipopolyplexes. Cancer Gene Ther 14, 802–814 (2007). https://doi.org/10.1038/sj.cgt.7701072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7701072

Keywords

This article is cited by

Search

Quick links