Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Molecular basis of the inflammatory response to adenovirus vectors

Abstract

Adenovirus vectors are extensively studied in experimental and clinical models as agents for gene therapy. Recent generations of helper-dependent adenovirus vectors have the majority of viral genes removed and result in vectors with a large carrying capacity, reduced host adaptive immune responses and improved gene transfer efficiency. Adenovirus vectors, however, activate innate immune responses shortly after administration in vivo. Unlike the adaptive response, the innate response to adenovirus vectors is transcription independent and is caused by the viral particle or capsid. This response results in inflammation of transduced tissues and substantial loss of vector genomes in the first 24 h. The adenovirus capsid activates a number of signaling pathways following cell entry including p38 mitogen-activated protein kinase and extracellular signal-regulated kinase (ERK) that ultimately lead to expression of proinflammatory genes. Various cytokines, chemokines and leukocyte adhesion molecules are induced by the adenovirus particle in a wide range of cell types providing a molecular basis for the inflammatory properties of these vectors. An understanding of the innate response to adenovirus vectors is essential to overcome the last remaining hurdle to improve the safety and effectiveness of these agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Wilson JM . Adenoviruses as gene-delivery vehicles. N Engl J Med 1996; 334: 1185–1187.

    Article  CAS  PubMed  Google Scholar 

  2. Kay MA, Glorioso JC, Naldini L . Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 2001; 7: 33–40.

    Article  CAS  PubMed  Google Scholar 

  3. Parks RJ et al. A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc Natl Acad Sci USA 1996; 93: 13565–13570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lieber A, He CY, Kirillova I, Kay MA . Recombinant adenoviruses with large deletions generated by Cre-mediated excision exhibit different biological properties compared with first- generation vectors in vitro and in vivo. J Virol 1996; 70: 8944–8960.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang Y et al. Acute cytokine response to systemic adenoviral vectors in mice is mediated by dendritic cells and macrophages. Mol Ther 2001; 3: 697–707.

    Article  CAS  PubMed  Google Scholar 

  6. Muruve DA, Barnes MJ, Stillman IE, Libermann TA . Adenoviral gene therapy leads to rapid induction of multiple chemokines and acute neutrophil-dependent hepatic injury in vivo. Hum Gene Ther 1999; 10: 965–976.

    Article  CAS  PubMed  Google Scholar 

  7. Worgall S, Wolff G, Falck-Pedersen E, Crystal RG . Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration. Hum Gene Ther 1997; 8: 37–44.

    Article  CAS  PubMed  Google Scholar 

  8. Guidotti LG, Chisari FV . Noncytolytic control of viral infections by the innate and adaptive immune response. Annu Rev Immunol 2001; 19: 65–91.

    Article  CAS  PubMed  Google Scholar 

  9. Dong C, Davis RJ, Flavell RA . MAP kinases in the immune response. Annu Rev Immunol 2002; 20: 55–72.

    Article  CAS  PubMed  Google Scholar 

  10. Yang Y et al. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc Natl Acad Sci USA 1994; 91: 4407–4411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang Y, Ertl HC, Wilson JM . MHC class I-restricted cytotoxic T lymphocytes to viral antigens destroy hepatocytes in mice infected with E1-deleted recombinant adenoviruses. Immunity 1994; 1: 433–442.

    Article  CAS  PubMed  Google Scholar 

  12. McCoy RD et al. Pulmonary inflammation induced by incomplete or inactivated adenoviral particles. Hum Gene Ther 1995; 6: 1553–1560.

    Article  CAS  PubMed  Google Scholar 

  13. Schnell MA et al. Activation of innate immunity in nonhuman primates following intraportal administration of adenoviral vectors. Mol Ther 2001; 3: 708–722.

    Article  CAS  PubMed  Google Scholar 

  14. Otake K, Ennist DL, Harrod K, Trapnell BC . Nonspecific inflammation inhibits adenovirus-mediated pulmonary gene transfer and expression independent of specific acquired immune responses. Hum Gene Ther 1998; 9: 2207–2222.

    Article  CAS  PubMed  Google Scholar 

  15. Zsengeller Z et al. Internalization of adenovirus by alveolar macrophages initiates early proinflammatory signaling during acute respiratory tract infection. J Virol 2000; 74: 9655–9667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Marshall E . Gene therapy's web of corporate connections [news]. Science 2000; 288: 954–955.

    Article  CAS  PubMed  Google Scholar 

  17. Li Y, Muruve DA, Lee SS, Kubes P . The role of selectins and integrins in adenovirus vector-induced neutrophil recruitment to the liver. Eur J Immunol 2002; 32: 3443–3452.

    Article  CAS  PubMed  Google Scholar 

  18. Bergelson JM et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997; 275: 1320–1323.

    Article  CAS  PubMed  Google Scholar 

  19. Dechecchi MC et al. Heparan sulfate glycosaminoglycans are receptors sufficient to mediate the initial binding of adenovirus types 2 and 5. J Virol 2001; 75: 8772–8780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR . Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 1993; 73: 309–319.

    Article  CAS  PubMed  Google Scholar 

  21. Li E et al. Integrin alpha(v)beta1 is an adenovirus coreceptor. J Virol 2001; 75: 5405–5409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Greber UF, Willetts M, Webster P, Helenius A . Stepwise dismantling of adenovirus 2 during entry into cells. Cell 1993; 75: 477–486.

    Article  CAS  PubMed  Google Scholar 

  23. Wang K, Guan T, Cheresh DA, Nemerow GR . Regulation of adenovirus membrane penetration by the cytoplasmic tail of integrin beta5. J Virol 2000; 74: 2731–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wickham TJ, Filardo EJ, Cheresh DA, Nemerow GR . Integrin alpha v beta 5 selectively promotes adenovirus mediated cell membrane permeabilization. J Cell Biol 1994; 127: 257–264.

    Article  CAS  PubMed  Google Scholar 

  25. Greber UF et al. The role of the nuclear pore complex in adenovirus DNA entry. EMBO J 1997; 16: 5998–6007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Suomalainen M et al. Microtubule-dependent plus- and minus end-directed motilities are competing processes for nuclear targeting of adenovirus. J Cell Biol 1999; 144: 657–672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang S et al. Adenovirus interaction with distinct integrins mediates separate events in cell entry and gene delivery to hematopoietic cells. J Virol 1996; 70: 4502–4508.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Higginbotham JN, Seth P, Blaese RM, Ramsey WJ . The release of inflammatory cytokines from human peripheral blood mononuclear cells in vitro following exposure to adenovirus variants and capsid. Hum Gene Ther 2002; 13: 129–141.

    Article  CAS  PubMed  Google Scholar 

  29. Tibbles LA et al. Activation of p38 and ERK signaling during adenovirus vector cell entry lead to expression of the C-X-C chemokine IP-10. J Virol 2002; 76: 1559–1568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hidaka C et al. CAR-dependent and CAR-independent pathways of adenovirus vector-mediated gene transfer and expression in human fibroblasts. J Clin Invest 1999; 103: 579–587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thomas CE et al. Acute direct adenoviral vector cytotoxicity and chronic, but not acute, inflammatory responses correlate with decreased vector-mediated transgene expression in the brain. Mol Ther 2001; 3: 36–46.

    Article  CAS  PubMed  Google Scholar 

  32. Amin R et al. Replication-deficient adenovirus induces expression of interleukin-8 by airway epithelial cells in vitro. Hum Gene Ther 1995; 6: 145–153.

    Article  CAS  PubMed  Google Scholar 

  33. Bruder JT, Kovesdi I . Adenovirus infection stimulates the Raf/MAPK signaling pathway and induces interleukin-8 expression. J Virol 1997; 71: 398–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bowen GP et al. Adenovirus vector-induced inflammation: capsid-dependent induction of the C-C chemokine RANTES requires NF-kappa B. Hum Gene Ther 2002; 13: 367–379.

    Article  CAS  PubMed  Google Scholar 

  35. Borgland SL et al. Adenovirus vector-induced expression of the C-X-C chemokine IP-10 is mediated through capsid-dependent activation of NF-kappaB. J Virol 2000; 74: 3941–3947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rafii S et al. Infection of endothelium with E1(−)E4(+), but not E1(−)E4(−), adenovirus gene transfer vectors enhances leukocyte adhesion and migration by modulation of ICAM-1, VCAM-1, CD34, and chemokine expression. Circ Res 2001; 88: 903–910.

    Article  CAS  PubMed  Google Scholar 

  37. Stark JM, Amin RS, Trapnell BC . Infection of A549 cells with a recombinant adenovirus vector induces ICAM-1 expression and increased CD-18-dependent adhesion of activated neutrophils. Hum Gene Ther 1996; 7: 1669–1681.

    Article  CAS  PubMed  Google Scholar 

  38. Giancotti FG . Complexity and specificity of integrin signalling. Nat Cell Biol 2000; 2: E13–E14.

    Article  CAS  PubMed  Google Scholar 

  39. Nemerow GR, Stewart PL . Role of alpha(v) integrins in adenovirus cell entry and gene delivery. Microbiol Mol Biol Rev 1999; 63: 725–734.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Li E et al. Association of p130CAS with phosphatidylinositol-3-OH kinase mediates adenovirus cell entry. J Biol Chem 2000; 275: 14729–14735.

    Article  CAS  PubMed  Google Scholar 

  41. Li E et al. Adenovirus endocytosis via alpha(v) integrins requires phosphoinositide-3-OH kinase. J Virol 1998; 72: 2055–2061.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Li E, Stupack D, Bokoch GM, Nemerow GR . Adenovirus endocytosis requires actin cytoskeleton reorganization mediated by Rho family GTPases. J Virol 1998; 72: 8806–8812.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Suomalainen M et al. Adenovirus-activated PKA and p38/MAPK pathways boost microtubule- mediated nuclear targeting of virus. EMBO J 2001; 20: 1310–1319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Roelvink PW et al. Identification of a conserved receptor-binding site on the fiber proteins of CAR-recognizing adenoviridae. Science 1999; 286: 1568–1571.

    Article  CAS  PubMed  Google Scholar 

  45. Roelvink PW et al. The coxsackievirus–adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroups A, C, D, E, and F. J Virol 1998; 72: 7909–7915.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Einfeld DA et al. Reducing the native tropism of adenovirus vectors requires removal of both CAR and integrin interactions. J Virol 2001; 75: 11284–11291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Teramoto H et al. Signaling from the small GTP-binding proteins Rac1 and Cdc42 to the c- Jun N-terminal kinase/stress-activated protein kinase pathway. A role for mixed lineage kinase 3/protein-tyrosine kinase 1, a novel member of the mixed lineage kinase family. J Biol Chem 1996; 271: 27225–27228.

    Article  CAS  PubMed  Google Scholar 

  48. Teramoto H et al. The small GTP-binding protein rho activates c-Jun N-terminal kinases/stress-activated protein kinases in human kidney 293 T cells. Evidence for a Pak-independent signaling pathway. J Biol Chem 1996; 271: 25731–25734.

    Article  CAS  PubMed  Google Scholar 

  49. Kurt-Jones EA et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 2000; 1: 398–401.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Q., Muruve, D. Molecular basis of the inflammatory response to adenovirus vectors. Gene Ther 10, 935–940 (2003). https://doi.org/10.1038/sj.gt.3302036

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302036

Keywords

This article is cited by

Search

Quick links