Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

CD20-induced B cell death can bypass mitochondria and caspase activation

Abstract

The apoptotic pathway activated by chimeric anti-CD20 monoclonal antibodies (rituximab, IDEC.C2B8) was analyzed using the Burkitt lymphoma cell line Ramos. Crosslinking of CD20 (CD20XL) induced apoptosis in Ramos cells, which involved loss of mitochondrial membrane potential (Δψm), the release of cytochrome-c (cyt-c), and activation of caspases-9 and -3. Nevertheless, several lines of evidence showed that the apoptotic outcome did not depend on these events. First, under circumstances where Ramos cells display resistance to either CD95- or B cell receptor (BCR)-induced apoptosis, CD20XL-induced apoptosis was not affected, pointing to a distinct pathway. Second, the broad-spectrum caspase inhibitor zVAD-fmk prevented processing of caspase-9, -3 and PARP as well as DNA fragmentation, but did not block apoptosis as measured by annexin V staining, cell size and membrane integrity. Lastly, Bcl-2 overexpression blocked cyt-c release and the decrease in Δψm, and completely prevented CD95- or BCR-mediated apoptosis; however, it did not affect CD20XL-induced cell death. We conclude that although CD20XL can initiate the mitochondrial apoptosis pathway, CD20-induced apoptosis does not necessarily require active caspases and cannot be blocked by Bcl-2. Since most chemotherapeutic drugs require the activation of caspases to exert their cytotoxicity, these findings provide an important rationale for the use of CD20 mAbs in chemoresistant malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. McLaughlin P, Grillo-Lopez AJ, Link BK, Levy R, Czuczman MS, Williams ME, Heyman MR, Bence-Bruckler I, White CA, Cabanillas F, Jain V, Ho AD, Lister J, Wey K, Shen D, Dallaire BK . Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program J Clin Oncol 1998 16: 2825–2833

    Article  CAS  PubMed  Google Scholar 

  2. Davis TA, White CA, Grillo-Lopez AJ, Velasquez WS, Link B, Maloney DG, Dillman RO, Williams ME, Mohrbacher A, Weaver R, Dowden S, Levy R . Single-agent monoclonal antibody efficacy in bulky non-Hodgkin's lymphoma: results of a phase II trial of rituximab J Clin Oncol 1999 17: 1851–1857

    Article  CAS  PubMed  Google Scholar 

  3. Coiffier B, Haioun C, Ketterer N, Engert A, Tilly H, Ma D, Johnson P, Lister A, Feuring-Buske M, Radford JA, Capdeville R, Diehl V, Reyes F . Rituximab (anti-CD20 monoclonal antibody) for the treatment of patients with relapsing or refractory aggressive lymphoma: a multicenter phase II study Blood 1998 92: 1927–1932

    CAS  PubMed  Google Scholar 

  4. Hainsworth JD . Monoclonal antibody therapy in lymphoid malignancies Oncologist 2000 5: 376–384

    Article  CAS  PubMed  Google Scholar 

  5. Treon SP, Anderson KC . The use of rituximab in the treatment of malignant and nonmalignant plasma cell disorders Semin Oncol 2000 27: 79–85

    CAS  PubMed  Google Scholar 

  6. Shan D, Ledbetter JA, Press OW . Apoptosis of malignant human B cells by ligation of CD20 with monoclonal antibodies Blood 1998 91: 1644–1652

    CAS  PubMed  Google Scholar 

  7. Hofmeister JK, Cooney D, Coggeshall KM . Clustered CD20 induced apoptosis: Src-family kinase, the proximal regulator of tyrosine phosphorylation, calcium influx, and caspase 3-dependent apoptosis Blood Cells Mol Dis 2000 26: 133–143

    Article  CAS  PubMed  Google Scholar 

  8. Kerr JF, Wyllie AH, Currie AR . Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics Br J Cancer 1972 26: 239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Strasser A, O'Connor L, Dixit VM . Apoptosis signaling Annu Rev Biochem 2000 69: 217–245

    Article  CAS  PubMed  Google Scholar 

  10. Fadok VA, de Cathelineau A, Daleke DL, Henson PM, Bratton DL . Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts J Biol Chem 2001 276: 1071–1077

    Article  CAS  PubMed  Google Scholar 

  11. Hengartner MO . The biochemistry of apoptosis Nature 2000 407: 770–776

    Article  CAS  PubMed  Google Scholar 

  12. Ashkenazi A, Dixit VM . Death receptors: signaling and modulation Science 1998 281: 1305–1308

    Article  CAS  PubMed  Google Scholar 

  13. Vander Heiden MG, Thompson CB . Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? Nat Cell Biol 1999 1: E209–E216

    Article  CAS  PubMed  Google Scholar 

  14. Li H, Zhu H, Xu CJ, Yuan J . Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis Cell 1998 94: 491–501

    Article  CAS  PubMed  Google Scholar 

  15. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME . Two CD95 (APO-1/Fas) signaling pathways EMBO J 1998 17: 1675–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X . Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade Cell 1997 91: 479–489

    Article  CAS  PubMed  Google Scholar 

  17. Zou H, Li Y, Liu X, Wang X . An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9 J Biol Chem 1999 274: 11549–11556

    Article  CAS  PubMed  Google Scholar 

  18. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X . Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked Science 1997 275: 1129–1132

    Article  CAS  PubMed  Google Scholar 

  19. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD . The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis Science 1997 275: 1132–1136

    Article  CAS  PubMed  Google Scholar 

  20. Mateo V, Lagneaux L, Bron D, Biron G, Armant M, Delespesse G, Sarfati M . CD47 ligation induces caspase-independent cell death in chronic lymphocytic leukemia Nat Med 1999 5: 1277–1284

    Article  CAS  PubMed  Google Scholar 

  21. Quignon F, De Bels F, Koken M, Feunteun J, Ameisen JC, de The H . PML induces a novel caspase-independent death process Nat Genet 1998 20: 259–265

    Article  CAS  PubMed  Google Scholar 

  22. Nylandsted J, Rohde M, Brand K, Bastholm L, Elling F, Jaattela M . Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bcl- 2 Proc Natl Acad Sci USA 2000 97: 7871–7876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ruefli AA, Smyth MJ, Johnstone RW . HMBA induces activation of a caspase-independent cell death pathway to overcome P-glycoprotein-mediated multidrug resistance Blood 2000 95: 2378–2385

    CAS  PubMed  Google Scholar 

  24. Deas O, Dumont C, MacFarlane M, Rouleau M, Hebib C, Harper F, Hirsch F, Charpentier B, Cohen GM, Senik A . Caspase-independent cell death induced by anti-CD2 or staurosporine in activated human peripheral T lymphocytes J Immunol 1998 161: 3375–3383

    CAS  PubMed  Google Scholar 

  25. Lens SM, den Drijver B, Potgens AJ, Tesselaar K, van Oers M, van Lier R . Dissection of pathways leading to antigen receptor-induced and Fas/CD95-induced apoptosis in human B cells J Immunol 1998 160: 6083–6092

    CAS  PubMed  Google Scholar 

  26. Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers M . Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis Blood 1994 84: 1415–1420

    CAS  PubMed  Google Scholar 

  27. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC . Measurement of protein using bicinchoninic acid Anal Biochem 1985 150: 76–85

    Article  CAS  PubMed  Google Scholar 

  28. Li X, Traganos F, Melamed MR, Darzynkiewicz Z . Single-step procedure for labeling DNA strand breaks with fluorescein- or BODIPY-conjugated deoxynucleotides: detection of apoptosis and bromodeoxyuridine incorporation Cytometry 1995 20: 172–180

    Article  CAS  PubMed  Google Scholar 

  29. Lens SM, Tesselaar K, den Drijver BF, van Oers MH, van Lier RA . A dual role for both CD40-ligand and TNF-alpha in controlling human B cell death J Immunol 1996 156: 507–514

    CAS  PubMed  Google Scholar 

  30. Fernandes-Alnemri T, Armstrong RC, Krebs J, Srinivasula SM, Wang L, Bullrich F, Fritz LC, Trapani JA, Tomaselli KJ, Litwack G, Alnemri ES . In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains Proc Natl Acad Sci USA 1996 93: 7464–7469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wolf BB, Schuler M, Echeverri F, Green DR . Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45/inhibitor of caspase-activated DNase inactivation J Biol Chem 1999 274: 30651–30656

    Article  CAS  PubMed  Google Scholar 

  32. Wesselborg S, Engels IH, Rossmann E, Los M, Schulze-Osthoff K . Anticancer drugs induce caspase-8/FLICE activation and apoptosis in the absence of CD95 receptor/ligand interaction Blood 1999 93: 3053–3063

    CAS  PubMed  Google Scholar 

  33. Wieder T, Essmann F, Prokop A, Schmelz K, Schulze-Osthoff K, Beyaert R, Dorken B, Daniel PT . Activation of caspase-8 in drug-induced apoptosis of B-lymphoid cells is independent of CD95/Fas receptor-ligand interaction and occurs downstream of caspase-3 Blood 2001 97: 1378–1387

    Article  CAS  PubMed  Google Scholar 

  34. Stennicke HR, Deveraux QL, Humke EW, Reed JC, Dixit VM, Salvesen GS . Caspase-9 can be activated without proteolytic processing J Biol Chem 1999 274: 8359–8362

    Article  CAS  PubMed  Google Scholar 

  35. Vier J, Furmann C, Hacker G . Baculovirus P35 protein does not inhibit caspase-9 in a cell-free system of apoptosis Biochem Biophys Res Commun 2000 276: 855–861

    Article  CAS  PubMed  Google Scholar 

  36. Ryan CA, Stennicke HR, Salvesen GS . Inhibitor specificity of endogenous versus recombinant capsase-9. Keystone Symposia 2001 Molecular Mechanisms of Apoptosis 2001 128: (Abstr.)

  37. Bursch W, Hochegger K, Torok L, Marian B, Ellinger A, Hermann RS . Autophagic and apoptotic types of programmed cell death exhibit different fates of cytoskeletal filaments J Cell Sci 2000 113: 1189–1198

    CAS  PubMed  Google Scholar 

  38. Shan D, Ledbetter JA, Press OW . Signaling events involved in anti-CD20-induced apoptosis of malignant human B cells Cancer Immunol Immunother 2000 48: 673–683

    Article  CAS  PubMed  Google Scholar 

  39. Berard M, Mondiere P, Casamayor-Palleja M, Hennino A, Bella C, Defrance T . Mitochondria connects the antigen receptor to effector caspases during B cell receptor-induced apoptosis in normal human B cells J Immunol 1999 163: 4655–4662

    CAS  PubMed  Google Scholar 

  40. Bouchon A, Krammer PH, Walczak H . Critical role for mitochondria in B cell receptor-mediated apoptosis Eur J Immunol 2000 30: 69–77

    Article  CAS  PubMed  Google Scholar 

  41. Mathas S, Rickers A, Bommert K, Dorken B, Mapara MY . Anti-CD20- and B-cell receptor-mediated apoptosis: evidence for shared intracellular signaling pathways Cancer Res 2000 60: 7170–7176

    CAS  PubMed  Google Scholar 

  42. Skov S, Klausen P, Claesson MH . Ligation of major histocompatability complex (MHC) class I molecules on human T cells induces cell death through PI-3 kinase-induced c-Jun NH2- terminal kinase activity: a novel apoptotic pathway distinct from Fas-induced apoptosis J Cell Biol 1997 139: 1523–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Garcia-Calvo M, Peterson EP, Leiting B, Ruel R, Nicholson DW, Thornberry NA . Inhibition of human caspases by peptide-based and macromolecular inhibitors J Biol Chem 1998 273: 32608–32613

    Article  CAS  PubMed  Google Scholar 

  44. Majumder PK, Pandey P, Sun X, Cheng K, Datta R, Saxena S, Kharbanda S, Kufe D . Mitochondrial translocation of protein kinase C delta in phorbol ester-induced cytochrome c release and apoptosis J Biol Chem 2000 275: 21793–21796

    Article  CAS  PubMed  Google Scholar 

  45. Frasch SC, Henson PM, Kailey JM, Richter DA, Janes MS, Fadok VA, Bratton DL . Regulation of phospholipid scramblase activity during apoptosis and cell activation by protein kinase Cdelta J Biol Chem 2000 275: 23065–23073

    Article  CAS  PubMed  Google Scholar 

  46. Bellosillo B, Villamor N, Lopez-Guillermo A, Marce S, Esteve J, Campo E, Colomer D, Montserrat E . Complement-mediated cell death induced by rituximab in B-cell lymphoproliferative disorders is mediated in vitro by a caspase-independent mechanism involving the generation of reactive oxygen species Blood 2001 98: 2771–2777

    Article  CAS  PubMed  Google Scholar 

  47. Ghetie MA, Bright H, Vitetta ES . Homodimers but not monomers of Rituxan (chimeric anti-CD20) induce apoptosis in human B-lymphoma cells and synergize with a chemotherapeutic agent and an immunotoxin Blood 2001 97: 1392–1398

    Article  CAS  PubMed  Google Scholar 

  48. Miyashita T, Reed JC . Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line Blood 1993 81: 151–157

    CAS  PubMed  Google Scholar 

  49. Kroemer G, Reed JC . Mitochondrial control of cell death Nat Med 2000 6: 513–519

    Article  CAS  PubMed  Google Scholar 

  50. Sandberg ML, Kaykas A, Sugden B . Latent membrane protein 1 of Epstein–Barr virus inhibits as well as stimulates gene expression J Virol 2000 74: 9755–9761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. D'Souza B, Rowe M, Walls D . The bfl-1 gene is transcriptionally upregulated by the Epstein–Barr virus LMP1, and its expression promotes the survival of a Burkitt's lymphoma cell line J Virol 2000 74: 6652–6658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Daugas E, Susin SA, Zamzami N, Ferri KF, Irinopoulou T, Larochette N, Prevost MC, Leber B, Andrews D, Penninger J, Kroemer G . Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis FASEB J 2000 14: 729–739

    Article  CAS  PubMed  Google Scholar 

  53. Daugas E, Nochy D, Ravagnan L, Loeffler M, Susin SA, Zamzami N, Kroemer G . Apoptosis-inducing factor (AIF): a ubiquitous mitochondrial oxidoreductase involved in apoptosis FEBS Lett 2000 476: 118–123

    Article  CAS  PubMed  Google Scholar 

  54. Bose R, Verheij M, Haimovitz-Friedman A, Scotto K, Fuks Z, Kolesnick R . Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals Cell 1995 82: 405–414

    Article  CAS  PubMed  Google Scholar 

  55. Kolesnick RN, Kronke M . Regulation of ceramide production and apoptosis Annu Rev Physiol 1998 60: 643–665

    Article  CAS  PubMed  Google Scholar 

  56. Wang HG, Pathan N, Ethell IM, Krajewski S, Yamaguchi Y, Shibasaki F, McKeon F, Bobo T, Franke TF, Reed JC . Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD Science 1999 284: 339–343

    Article  CAS  PubMed  Google Scholar 

  57. Crompton M . The mitochondrial permeability transition pore and its role in cell death Biochem J 1999 341: 233–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sperandio S, de BI, Bredesen DE . An alternative, nonapoptotic form of programmed cell death Proc Natl Acad Sci USA 2000 97: 14376–14381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kleinberger T . Induction of apoptosis by adenovirus E4orf4 protein Apoptosis 2000 5: 211–215

    Article  CAS  PubMed  Google Scholar 

  60. Forcet C, Ye X, Granger L, Corset V, Shin H, Bredesen DE, Mehlen P . The dependence receptor DCC (deleted in colorectal cancer defines an alternative mechanism for caspase activation Proc Natl Acad Sci USA 2001 98: 3416–3421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J . Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta Nature 2000 403: 98–103

    Article  CAS  PubMed  Google Scholar 

  62. Lotem J, Sachs L . Regulation by bcl-2, c-myc, and p53 of susceptibility to induction of apoptosis by heat shock and cancer chemotherapy compounds in differentiation-competent and -defective myeloid leukemic cells Cell Growth Differ 1993 4: 41–47

    CAS  PubMed  Google Scholar 

  63. Hermine O, Haioun C, Lepage E, d'Agay MF, Briere J, Lavignac C, Fillet G, Salles G, Marolleau JP, Diebold J, Reyas F, Gaulard P . Prognostic significance of bcl-2 protein expression in aggressive non-Hodgkin's lymphoma. Groupe d'Etude des Lymphomes de l'Adulte (GELA) Blood 1996 87: 265–272

    CAS  PubMed  Google Scholar 

  64. Maung ZT, MacLean FR, Reid MM, Pearson AD, Proctor SJ, Hamilton PJ, Hall AG . The relationship between bcl-2 expression and response to chemotherapy in acute leukaemia Br J Haematol 1994 88: 105–109

    Article  CAS  PubMed  Google Scholar 

  65. Martinka M, Comeau T, Foyle A, Anderson D, Greer W . Prognostic significance of t(14;18)and bcl-2 gene expression in follicular small cleaved cell lymphoma and diffuse large cell lymphoma Clin Invest Med 1997 20: 364–370

    CAS  PubMed  Google Scholar 

  66. Kramer MH, Hermans J, Parker J, Krol AD, Kluin-Nelemans JC, Haak HL, van GK, van KJ, de JD, Kluin PM . Clinical significance of bcl2 and p53 protein expression in diffuse large B-cell lymphoma: a population-based study J Clin Oncol 1996 14: 2131–2138

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was sponsored in part by a grant from the Dutch Cancer Society to EE. We thank Peter Teeling of the Pathology Dept for his kind help with electronmicroscopy.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Kolk, L., Evers, L., Omene, C. et al. CD20-induced B cell death can bypass mitochondria and caspase activation. Leukemia 16, 1735–1744 (2002). https://doi.org/10.1038/sj.leu.2402559

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402559

Keywords

This article is cited by

Search

Quick links