Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Immunology

Addition of the CD28 signaling domain to chimeric T-cell receptors enhances chimeric T-cell resistance to T regulatory cells

Abstract

T cells can be engineered to target tumor cells by transduction of tumor-specific chimeric receptors, consisting of an extracellular antigen-binding domain and an intracellular signaling domain. However, the peripheral blood of cancer patients frequently contains an increased number of T regulatory cells, which appear to inhibit immune reactivity. We have investigated the effects of T regulatory cells on chimeric T cells specific for the B-cell antigen CD19, as B-cell malignancies are attractive targets for chimeric T-cell therapy. When a CD19 single-chain Fv antibody was coupled to the CD3 zeta (ζ) chain, there was sharply reduced activity on exposure to T regulatory cells, measured by CD19+ target-induced proliferation and cytotoxicity. By contrast, expression in T cells of a chimeric receptor consisting of the intracellular portion of the CD28 molecule fused to the ζ-chain and CD19 single-chain Fv not only produced a higher proliferative response and an increased nuclear factor κB activation but also sustained these activities in the presence of T regulatory cells. These effects are seen whether the chimeric T cells are derived from normal donors or from patients with B-cell chronic lymphocytic leukemia, indicating the potential for clinical application in B cell malignancies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Rossig C, Brenner MK . Genetic modification of T lymphocytes for adoptive immunotherapy. Mol Ther 2004; 10: 5–18.

    Article  CAS  Google Scholar 

  2. Mekala DJ, Alli RS, Geiger TL . IL-10-dependent infectious tolerance after the treatment of experimental allergic encephalomyelitis with redirected CD4+CD25+ T lymphocytes. Proc Nat Acad Sci 2005; 102: 11817–11822.

    Article  CAS  Google Scholar 

  3. Pule M, Finney H, Lawson A . Artificial T-cell receptors. Cytotherapy 2003; 5: 211–226.

    Article  CAS  Google Scholar 

  4. O'Garra A, Vieira P . Regulatory T cells and mechanisms of immune system control. Nat Med 2004; 10: 801–805.

    Article  CAS  Google Scholar 

  5. D'Orazio TJ, Niederkorn JY . A novel role for TGF-β and IL-10 in the induction of immune privilege. J Immunol 1998; 160: 2089–2098.

    CAS  PubMed  Google Scholar 

  6. Beacher-Allan C, Viglietta V, Hafler D . Human CD4+CD25+ regulatory T-cells. Sem Immunol 2004; 16: 89–97.

    Article  Google Scholar 

  7. Coffer PJ, Burgering BMT . Forkhead-box transcription factors and their role in the immune system. Nat Rev Immunol 2004; 4: 889–899.

    Article  CAS  Google Scholar 

  8. Fehérvari Z, Sakaguchi S . CD4+ Tregs and immune control. J Clin Invest 2004; 114: 1209–1217.

    Article  Google Scholar 

  9. Biagi E, Rousseau R, Yvon E, Schwartz M, Dotti G, Foster A et al. Responses to human CD40 ligand/human interleukin-2 autologous cell vaccine in patients with B-cell chronic lymphocytic leukemia. Clin Cancer Res 2005; 11: 6916–6923.

    Article  CAS  Google Scholar 

  10. Wierda WG, Cantwell MJ, Woods SJ, Rassenti LZ, Prussak CE, Kipps TJ . CD40-ligand (CD154) gene therapy for chronic lymphocytic leukemia. Blood 2000; 96: 2917–2924.

    CAS  Google Scholar 

  11. Cooper LJ, Al-Kadhimi Z, DiGiusto D, Kalos M, Colcher D, Raubitschek A et al. Development and application of CD19-specific T cells for adoptive immunotherapy of B cell malignancies. Blood Cells Mol Dis 2004; 33: 83–89.

    Article  CAS  Google Scholar 

  12. Cooper LJN, Topp MS, Serrano LM, Gonzalez S, Chang WC, Naranjo A et al. T-cell clones can be rendered specific for CD19: toward the selective augmentation of the graft-versus-B-lineage leukemia effect. Blood 2003; 101: 1637–1644.

    Article  CAS  Google Scholar 

  13. Beyer M, Kochanek M, Darabi K, Popov A, Jensen M, Endl E et al. Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood 2005; 106: 2018–2025.

    Article  CAS  Google Scholar 

  14. Fu S, Zhang N, Yopp AC, Chen D, Mao M, Chen D et al. TGF-b induces Foxp3+ T-regulatory cells from CD4+CD25- precursors. Am J Transplant 2004; 4: 1614–1627.

    Article  CAS  Google Scholar 

  15. Nicholson IC, Lenton KA, Little DJ, Decorso T, Lee FT, Scott AM et al. Construction and characterization of a functional CD19 specific single chain Fv fragment for immunotherapy of B lineage leukaemia and lymphoma. Mol Immunol 1997; 34: 1157–1165.

    Article  CAS  Google Scholar 

  16. Eshhar Z, Waks T, Gross G, Schindler DG . Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Pro Natl Acad Sci USA 1993; 90: 720–724.

    Article  CAS  Google Scholar 

  17. Weissman AM, Hou D, Orloff DG, Modi WS, Seuanex H, O'Brien SJ et al. Molecular cloning and chromosomal localization of the human T-cell receptor zeta chain: distinction from the molecular CD3 complex. Proc Natl Acad Sci USA 1988; 85: 9709–9713.

    Article  CAS  Google Scholar 

  18. Riviere I, Brose K, Mulligan RC . Effects of retroviral vector design on expression of human adenosine deaminase in murine bone marrow transplant recipients engrafted with genetically modified cells. Proc Natl Acad Sci USA 1995; 92: 6733–6737.

    Article  CAS  Google Scholar 

  19. Cosset F-L, Takeuchi Y, Battini J-L, Weiss RA, Collins MKL . High-titer packaging cells producing recombinant retroviruses resistant to human serum. J Virol 1995; 69: 7430–7436.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kane LP, Lin J, Weiss A . It's all Rel-ative: NFκB and CD28 costimulation of T-cell activation. Trends Immunol 2002; 23: 413–420.

    Article  CAS  Google Scholar 

  21. Chambers CA . The expanding world of co-stimulation: the two-signal model revisited. Trends Immunol 2001; 22: 217–223.

    Article  CAS  Google Scholar 

  22. Parry RV, Whittaker GC, Sims M, Edmead CE, Welham MJ, Ward SG . Ligation of CD28 stimulates the formation of a multimeric signaling complex involving Grb-2-associated binder 2 (Gab2), src homology phosphatase-2, and phosphatidylinositol 3-kinase: evidence that negative regulation of CD28 signaling requires the Gab2 pleckstrin homology domain. J Immunol 2006; 176: 594–602.

    Article  CAS  Google Scholar 

  23. Appleman LJ, Tzachanis D, Grader-Beck T, van Puijenbroek AA, Boussiotis VA . Helper T cell anergy: from biochemistry to cancer pathophysiology and therapeutics. J Mol Med 2001; 78: 673–683.

    Article  CAS  Google Scholar 

  24. Mesa C, Fernandez LE . Challenges facing adjuvants for cancer immunotherapy. Immunol Cell Biol 2004; 82: 644–650.

    Article  CAS  Google Scholar 

  25. Thomas RM, Gao L, Wells AD . Signals from CD28 induce stable epigenetic modification of the IL-2 promoter. J Immunol 2005; 174: 4639–4646.

    Article  CAS  Google Scholar 

  26. Slavik JM, Hutchcroft JE, Bierer BE . CD28/CTLA-4 and CD80/CD86 families: signaling and function. Immunol Res 1999; 19: 1–24.

    Article  CAS  Google Scholar 

  27. Maher J, Brentjens RJ, Gunset G, Riviere I, Sadelain M . Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta/CD28 receptor. Nat Biotechnol 2002; 20: 70–75.

    Article  CAS  Google Scholar 

  28. Haynes NM, Trapani JA, Teng MWL, Jackson JT, Cerruti L, Jane SM et al. Rejection of syngeneic colon carcinoma by CTLs expressing single-chain antibody receptors codelivering CD28 costimulation. J Immunol 2002; 169: 5780–5786.

    Article  CAS  Google Scholar 

  29. Teng MWL, Kershaw MH, Moeller M, Smyth MJ, Darcy PK . Immunotherapy of cancer using systemically delivered gene-modified human T-lymphocytes. Human Gene Ther 2004; 15: 699–708.

    Article  CAS  Google Scholar 

  30. Friedmann-Morvinski D, Bendavid A, Waks T, Schindler D, Eshhar Z . Redirected primary T cells harboring a chimeric receptor require costimulation for their antigen-specific activation. Blood 2005; 105: 3087–3093.

    Article  CAS  Google Scholar 

  31. Fehervari Z, Sakaguchi S . CD4+ Tregs and immune control. J Clin Invest 2004; 114: 1209–1217.

    Article  CAS  Google Scholar 

  32. Pestka S, Krause CD, Sarkar D, Walter MR, Shi Y, Fisher PB . Interleukin-10 and related cytokines and receptors. Annu Rev Immunol 2004; 22: 929–979.

    Article  CAS  Google Scholar 

  33. Letterio JJ . TGF-beta signaling in T cells: roles in lymphoid and epithelial neoplasia. Oncogene 2005; 24: 5701–5712.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Ettore Biagi, Eric Yvon and Dr Barbara Savoldo for B-CLL patient material and excellent technical advice (Baylor College of Medicine, Houston, TX, USA). This work was supported by NIH Grant CA94237 and grants from Emil and Ragna Börjessons Memory Fund, the Swedish Cancer Fund and Uppsala University Hospital Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Loskog.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loskog, A., Giandomenico, V., Rossig, C. et al. Addition of the CD28 signaling domain to chimeric T-cell receptors enhances chimeric T-cell resistance to T regulatory cells. Leukemia 20, 1819–1828 (2006). https://doi.org/10.1038/sj.leu.2404366

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404366

Keywords

This article is cited by

Search

Quick links