Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Toll-like receptor agonists in the treatment of chronic lymphocytic leukemia

Abstract

Advances in our understanding of the Toll-like receptors (TLRs) have led to the identification of several agonists that are suitable for clinical development. Chronic lymphocytic leukemia (CLL) may be especially amenable to TLR agonists because it is an immunologically susceptible tumor with strong expression of several TLRs, particularly TLR-7 and TLR-9. TLR agonists may indirectly clear CLL cells by enhancing the activity of natural killer and tumor-reactive T cells, or by altering the tumor microenvironment and inhibiting angiogenesis. However, signaling pathways can be activated directly in CLL cells by TLR-7 and TLR-9 agonists, leading to the production of cytokines and costimulatory molecules in a manner that is dependent on the underlying cytogenetic abnormalities, but rendering the tumor cells more sensitive to killing by cytotoxic T cells, immunotoxins and some chemotherapeutic drugs. Imidazoquinolines are TLR-7 agonists with strong local activity against CLL, and phase I trials of systemically administered imidazoquinolines (and also cytosine-phosphate-guanosine oligonucleotides that are TLR-9 agonists) are currently ongoing at different centers. The potential importance of these TLR agonists in the treatment of CLL is suggested by their ability to sensitize tumor cells to cytotoxic agents, and their future probably lies in combination with radiotherapies, chemotherapies, monoclonal antibodies and cancer vaccines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Montserrat E . CLL therapy: progress at last. Blood 2005; 105: 2–3.

    Article  CAS  Google Scholar 

  2. Rosenberg SA, Yang JC, Restifo NP . Cancer immunotherapy: moving beyond current vaccines. Nat Med 2004; 10: 909–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Spaner D . Amplifying cancer vaccine responses by modifying pathogenic gene programs in tumor cells. J Leukoc Biol 2004; 76: 338–351.

    Article  CAS  PubMed  Google Scholar 

  4. Medzhitov R, Preston P, Janeway C . A human homologue of Drosophila Toll signals activation of adaptive immunity. Nature 1997; 388: 394–397.

    Article  CAS  PubMed  Google Scholar 

  5. Akira S . Mammalian Toll-like receptors. Curr Opin Immunol 2003; 15: 5–11.

    Article  CAS  PubMed  Google Scholar 

  6. Faure E, Equils O, Sieling P, Thomas L, Zhang F, Kirschning C et al. LPS activates NFκB through TLR4 in endothelial cells. J Biol Chem 2000; 275: 11058–11063.

    Article  CAS  PubMed  Google Scholar 

  7. Cognasse F, Hamzeh H, Chavarin P, Acquart S, Genin C, Garraud O . Evidence of TLRs on human platelets. Immunol Cell Biol 2005; 83: 196–198.

    Article  CAS  PubMed  Google Scholar 

  8. Colonna M . Alerting DCs to pathogens: the importance of TLR signaling of stromal cells. Proc Natl Acad Sci USA 2004; 101: 16083–16084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Peng SL . Signaling in B cells via TLRs. Curr Opin Immunol 2005; 17: 230–236.

    Article  CAS  PubMed  Google Scholar 

  10. Peng G, Guo Z, Kiniwa Y, Voo KS, Peng W, Fu T et al. TLR8-mediated reversal of regulatory T cell function. Science 2005; 309: 1380–1384.

    Article  CAS  PubMed  Google Scholar 

  11. Kawai T, Akira S . Innate immune recognition of viral infection. Nat Immunol 2006; 7: 131–137.

    Article  CAS  PubMed  Google Scholar 

  12. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S et al. Recognition of ssRNA via TLR 7 and 8. Science 2004; 303: 1526–1529.

    Article  CAS  PubMed  Google Scholar 

  13. Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 2002; 3: 196–200.

    Article  CAS  PubMed  Google Scholar 

  14. Lee J, Chuang TH, Redecke V, She L, Pitha PM, Carson DA et al. Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: activation of TLR7. Proc Natl Acad Sci USA 2003; 100: 6646–6651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kawai T, Akira S . Pathogen recognition with TLRs. Curr Opin Immunol 2005; 17: 338–344.

    Article  CAS  PubMed  Google Scholar 

  16. Li VW, Li WW, Talcott KE, Zhai AW . Imiquimod as an antiangiogenic agent. J Drugs Dermatol 2005; 4: 708–717.

    PubMed  Google Scholar 

  17. Gitelson E, Hammond C, Mena J, Lorenzo M, Buckstein R, Berinstein N et al. CLL-reactive T cells during tumor progression and after oxidized autologous tumor cell vaccines. Clin Can Res 2003; 9: 1656–1665.

    CAS  Google Scholar 

  18. Krackhardt AM, Witzens M, Harig S, Hodi FS, Zauls AJ, Chessia M et al. Identification of TAAs in CLL by SEREX. Blood 2002; 100: 2123–2131.

    Article  CAS  PubMed  Google Scholar 

  19. Konig A, Menzel T, Lynen S, Wrazel L, Rosen A, Al Katib A et al. bFGF upregulates the expression of bcl-2 in CLL cell lines resulting in delaying apoptosis. Leukemia 1997; 11: 258–265.

    Article  CAS  PubMed  Google Scholar 

  20. Menzel T, Rahman Z, Calleja E, White K, Wilson EL, Wieder R et al. Elevated intracellular level of bFGF correlates with CLL stage and is associated with resistance to fludarabine. Blood 1996; 87: 1056–1063.

    CAS  PubMed  Google Scholar 

  21. Molica S, Vacca A, Ribatti D, Cuneo A, Cavazzini F, Levato D et al. Prognostic value of enhanced bone marrow angiogenesis in early B-CLL. Blood 2002; 100: 3344–3351.

    Article  CAS  PubMed  Google Scholar 

  22. Fillatreau S, Manz RA . Tolls for B cells. Eur J Immunol 2006; 36: 798–801.

    Article  CAS  PubMed  Google Scholar 

  23. Bernasconi NL, Onai N, Lanzavecchia A . A role for TLRs in acquired immunity: up-regulation of TLR9 by BCR triggering in naive B cells and constitutive expression in memory B cells. Blood 2003; 101: 4500–4504.

    Article  CAS  PubMed  Google Scholar 

  24. Dasari P, Nicholson IC, Hodge G, Dandie GW, Zola H . Expression of Toll-like receptors on B lymphocytes. Cell Immunol 2005; 236: 140–145.

    Article  CAS  PubMed  Google Scholar 

  25. Mansson A, Adner M, Hockerfelt U, Cardell LO . A distinct TLR repertoire in human tonsillar B cells, directly activated by PamCSK, R-837 and CpG-2006 stimulation. Immunology 2006; 118: 539–548.

    PubMed  PubMed Central  Google Scholar 

  26. Anders HJ, Banas B, Schlondorff D . Signaling danger: toll-like receptors and their potential roles in kidney disease. J Am Soc Nephrol 2004; 15: 854–867.

    Article  CAS  PubMed  Google Scholar 

  27. Hasan U, Chaffois C, Gaillard C, Saulnier V, Merck E, Tancredi S et al. Human TLR10 is a functional receptor, expressed by B cells and pDCs, which activates gene transcription through MyD88. J Immunol 2005; 174: 2942–2950.

    Article  CAS  PubMed  Google Scholar 

  28. Kadowaki N, Ho S, Antonenko S, Malefyt RW, Kastelein RA, Bazan F et al. Subsets of human DC precursors express different TLRs and respond to different microbial antigens. J Exp Med 2001; 194: 863–869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ahmad-Nejad P, Hacker H, Rutz M, Bauer S, Vabulas RM, Wagner H . Bacterial CpG-DNA and LPS activate TLRs at distinct cellular compartments. Eur J Immunol 2002; 32: 1958–1968.

    Article  CAS  PubMed  Google Scholar 

  30. Ojaniemi M, Glumoff V, Harju K, Liljeroos M, Vuori K, Hallman M . Phosphatidylinositol 3-kinase is involved in Toll-like receptor 4-mediated cytokine expression in mouse macrophages. Eur J Immunol 2003; 33: 597–605.

    Article  CAS  PubMed  Google Scholar 

  31. Longo P, Laurenti L, Gobessi S, Petlickovski A, Pelosi M, Chiusolo P et al. The Akt signaling pathway determines the proliferative capacity of CLL-B cells from patients with progressive and stable disease. Leukemia 2006; 20: October 5 [E-pub ahead of print].

  32. Spaner DE, Shi Y, Mena J, Hammond C, Tomic J, He L et al. Immunomodulatory effects of TLR7 activation on CLL cells. Leukemia 2006; 20: 286–295.

    Article  CAS  PubMed  Google Scholar 

  33. Decker T, Peschel C . Effect of CpG-oligonucleotides in CLL cells. Leuk Lymphoma 2001; 42: 301–307.

    Article  CAS  PubMed  Google Scholar 

  34. Bekeredjian-Ding IB, Wagner M, Hornung V, Giese T, Schnurr M, Endres S et al. pDCs control TLR7 sensitivity of naive B cells via type I IFN. J Immunol 2005; 174: 4043–4050.

    Article  PubMed  Google Scholar 

  35. Spaner D, Miller RL, Mena J, Grossman L, Sorrenti V, Shi Y . Regression of lymphomatous skin deposits in a CLL patient treated with the Toll receptor-7/8 agonist, Imiquimod. Leuk Lymphoma 2005; 46: 935–939.

    Article  PubMed  Google Scholar 

  36. Uematsu S, Sato S, Yamamoto M, Hirotani T, Kato H, Takeshita F et al. IRAK1 plays an essential role for TLR7- and TLR9-mediated IFN induction. J Exp Med 2005; 201: 915–923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Decker T, Schneller F, Sparwasser T, Tretter T, Lipford GB, Wagner H et al. CpG-oligonucleotides cause proliferation, cytokine production, and an immunogenic phenotype in CLL cells. Blood 2000; 95: 999–1006.

    CAS  PubMed  Google Scholar 

  38. Jahrsdorfer B, Jox R, Muhlenhoff L, Tschoep K, Krug A, Rothenfusser S et al. Modulation of malignant B cell activation and apoptosis by bcl-2 antisense ODN and immunostimulatory CpG ODN. J Leukoc Biol 2002; 72: 83–92.

    CAS  PubMed  Google Scholar 

  39. Jahrsdorfer B, Hartmann G, Racila E, Jackson W, Muhlenhoff L, Meinhardt G et al. CpG DNA increases primary malignant B cell expression of costimulatory molecules and target antigens. J Leukoc Biol 2001; 69: 81–88.

    CAS  PubMed  Google Scholar 

  40. Jahrsdorfer B, Muhlenhoff L, Blackwell SE, Wagner M, Poeck H, Hartmann E et al. B-cell lymphomas differ in their responsiveness to CpG oligodeoxynucleotides. Clin Cancer Res 2005; 11: 1490–1499.

    Article  CAS  PubMed  Google Scholar 

  41. Tomic J, White D, Shi Y, Mena J, Hammond C, He L et al. Sensitization of IL-2 signaling by TLR-7 enhances B lymphoma cell immunogenicity. J Immunol 2006; 176: 3830–3839.

    Article  CAS  PubMed  Google Scholar 

  42. Schoenemeyer A, Barnes B, Mancl M, Latz E, Goutagny N, Pitha P et al. IRF5 is a central mediator of TLR7-signaling. J Biol Chem 2005; 280: 17005–17012.

    Article  CAS  PubMed  Google Scholar 

  43. Barnes BJ, Kellum MJ, Pinder KE, Frisancho JA, Pitha PM . IRF5, a novel mediator of cell cycle arrest and cell death. Cancer Res 2003; 63: 6424–6431.

    CAS  PubMed  Google Scholar 

  44. Spaner DE, Hammond C, Mena J, Shi Y . Effect of IL-2R beta-binding cytokines on costimulatory properties of CLL cells. Br J Haematol 2004; 127: 531–542.

    Article  CAS  PubMed  Google Scholar 

  45. Hammond C, Shi Y, Mena J, Tomic J, Cervi D, He L et al. Effect of serum and antioxidants on PKC-activated CLL cell immunogenicity. J Immunother 2005; 28: 28–39.

    Article  CAS  PubMed  Google Scholar 

  46. Perkins ND, Felzien LK, Betts JC, Leung K, Beach DH, Nabel GJ . Regulation of NFκB by CDKs associated with p300. Science 1997; 275: 523–527.

    Article  CAS  PubMed  Google Scholar 

  47. Caligaris-Cappio F . The microenvironment in CLL. Br J Haematol 2003; 123: 380–388.

    Article  PubMed  Google Scholar 

  48. Decker T, Hipp S, Ringshausen I, Bogner C, Oelsner M, Schneller F et al. Rapamycin-induced G1 arrest in cycling CLL cells is associated with reduced expression of cyclins D3, E, A, and survivin. Blood 2003; 101: 278–285.

    Article  CAS  PubMed  Google Scholar 

  49. Decker T, Schneller F, Hipp S, Miething C, Jahn T, Duyster J et al. Cell cycle progression of CLL cells is controlled by cyclins D2, D3, CDK4 and the cdk inhibitor p27. Leukemia 2002; 16: 327–334.

    Article  CAS  PubMed  Google Scholar 

  50. Goodman MG, Spinosa JC, Saven A, Piro LD, Wormsley S . New perspectives on the approach to CLL. Leuk Lymphoma 1996; 22: 1–10.

    Article  CAS  PubMed  Google Scholar 

  51. Wang T, Niu G, Kortylewski M, Burdelya L, Shain K, Zhang S et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 2004; 10: 48–54.

    Article  PubMed  Google Scholar 

  52. Zou W . Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 2006; 6: 295–307.

    Article  CAS  PubMed  Google Scholar 

  53. Caligaris-Cappio F, Hamblin TJ . CLL: a bird of a different feather. J Clin Oncol 1999; 17: 399–408.

    Article  CAS  PubMed  Google Scholar 

  54. Spaner DE, Hammond C, Mena J, Foden C, Deabreu A . A phase I/II trial of oxidized autologous tumor vaccines during the ‘watch and wait’ phase of CLL. Cancer Immunol Immunother 2005; 54: 635–646.

    Article  PubMed  Google Scholar 

  55. Shanafelt TD, Geyer SM, Kay NE . Prognosis at diagnosis in CLL. Blood 2004; 103: 1202–1210.

    Article  CAS  PubMed  Google Scholar 

  56. Jahrsdorfer B, Wooldridge JE, Blackwell SE, Taylor CM, Griffith TS, Link BK et al. Immunostimulatory oligodeoxynucleotides induce apoptosis of B cell chronic lymphocytic leukemia cells. J Leukoc Biol 2005; 77: 378–387.

    Article  PubMed  Google Scholar 

  57. Komarova EA, Krivokrysenko V, Wang K, Neznanov N, Chernov MV, Komarov PG et al. p53 is a suppressor of inflammatory response in mice. FASEB J 2005; 19: 1030–1032.

    Article  CAS  PubMed  Google Scholar 

  58. Suliman H, Carraway M, Welty K, Whorton A, Piantadosi C . LPS stimulates mitochondrial biogenesis via NRF-1. J Biol Chem 2003; 278: 41510–41518.

    Article  CAS  PubMed  Google Scholar 

  59. Schimmer AD, Munk-Pedersen I, Minden MD, Reed JC . Bcl-2 and apoptosis in CLL. Curr Treat Options Oncol 2003; 4: 211–218.

    Article  PubMed  Google Scholar 

  60. Decker T, Hipp S, Kreitman RJ, Pastan I, Peschel C, Licht T . Sensitization of CLL cells to recombinant immunotoxin by immunostimulatory phosphorothioate oligodeoxynucleotides. Blood 2002; 99: 1320–1326.

    CAS  PubMed  Google Scholar 

  61. Byrd JC, Rai K, Peterson BL, Appelbaum FR, Morrison VA, Kolitz JE et al. Addition of rituximab may prolong progression-free survival and overall survival in patients with previously untreated CLL. Blood 2005; 105: 49–53.

    Article  CAS  PubMed  Google Scholar 

  62. Damiano V, Caputo R, Bianco R, D'Armiento FP, Leonardi A, De Placido S et al. Novel TLR 9 agonist induces EGFR inhibition and synergistic antitumor activity with EGFR inhibitors. Clin Cancer Res 2006; 12: 577–583.

    Article  CAS  PubMed  Google Scholar 

  63. Mason KA, Ariga H, Neal R, Valdecanas D, Hunter N, Krieg AM et al. Targeting TLR9 with CpG oligodeoxynucleotides enhances tumor response to fractionated radiotherapy. Clin Cancer Res 2005; 11: 361–369.

    CAS  PubMed  Google Scholar 

  64. Goodman MG, Wormsley SB, Spinosa JC, Piro LD . Loxoribine induces CLL cells to traverse the cell cycle. Blood 1994; 84: 3457–3464.

    CAS  PubMed  Google Scholar 

  65. Tosi P, Zinzani PL, Pellacani A, Ottaviani E, Magagnoli M, Tura S . Loxoribine affects fludarabine activity on CLL cells. Leuk Lymphoma 1997; 26: 343–348.

    Article  CAS  PubMed  Google Scholar 

  66. Pellacani A, Tosi P, Zinzani PL, Ottaviani E, Albertini P, Magagnoli M et al. Cytotoxic combination of loxoribine with fludarabine and mafosfamide on freshly isolated CLL cells. Leuk Lymphoma 1999; 33: 147–153.

    Article  CAS  PubMed  Google Scholar 

  67. Wooldridge JE, Weiner GJ . CpG DNA and cancer immunotherapy: orchestrating the antitumor response. Curr Opin Oncol 2003; 15: 440–445.

    Article  CAS  PubMed  Google Scholar 

  68. Weiner GJ, Witzig TE, Link BK . The University of Iowa/Mayo Clinic Lymphoma SPORE. Clin Adv Hematol Oncol 2004; 2: 57–59.

    Google Scholar 

  69. Agarwala SS, Kirkwood JM, Bryant J . Phase 1, randomized trial of Loxoribine in advanced cancer. Cytokines Cell Mol Ther 2000; 6: 171–176.

    Article  CAS  PubMed  Google Scholar 

  70. Gorden KB, Gorski KS, Gibson SJ, Kedl RM, Kieper WC, Qiu X et al. Synthetic TLR agonists reveal functional differences between human TLR7 and TLR8. J Immunol 2005; 174: 1259–1268.

    Article  CAS  PubMed  Google Scholar 

  71. Dudek A et al. Immune response activation by a TLR-7 agonist: results of a phase 1 study. J Clin Oncol 2005; 23: 2515a.

    Article  Google Scholar 

  72. Kreitman RJ . Recombinant toxins for cancer treatment. Curr Opin Mol Ther 2003; 5: 44–51.

    CAS  PubMed  Google Scholar 

  73. Napolitani G, Rinaldi A, Bertoni F, Sallusto F, Lanzavecchia A . TLR agonist combinations synergistically trigger a Th1-polarizing program in DCs. Nat Immunol 2005; 6: 769–776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wingender G, Garbi N, Schumak B, Jungerkes F, Endl E, von Bubnoff D et al. Systemic application of CpG-rich DNA suppresses adaptive T cell immunity via induction of IDO. Eur J Immunol 2006; 36: 12–20.

    Article  CAS  PubMed  Google Scholar 

  75. Mellor A, Baban B, Chandler P, Manlapat A, Kahler D, Munn D . CpG oligonucleotides induce splenic CD19+ DCs to acquire IDO-dependent T cell regulatory functions via IFN signaling. J Immunol 2005; 175: 5601–5605.

    Article  CAS  PubMed  Google Scholar 

  76. Kelly MG, Alvero AB, Chen R, Silasi DA, Abrahams VM, Chan S et al. TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Res 2006; 66: 3859–3868.

    Article  CAS  PubMed  Google Scholar 

  77. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE et al. A MicroRNA signature associated with prognosis and progression in CLL. N Engl J Med 2005; 353: 1793–1801.

    Article  CAS  PubMed  Google Scholar 

  78. Adinolfi E, Melchiorri L, Falzoni S, Chiozzi P, Morelli A, Tieghi A et al. P2X7R expression in evolutive and indolent forms of CLL. Blood 2002; 99: 706–708.

    Article  CAS  PubMed  Google Scholar 

  79. Akira S, Takeda K . TLR signalling. Nat Rev Immunol 2004; 4: 499–511.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Ontario Cancer Research Network (OCRN) and the Canadian Institutes of Health Research (CIHR) to DS. This work is dedicated to the memory of Bernard Spaner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D E Spaner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spaner, D., Masellis, A. Toll-like receptor agonists in the treatment of chronic lymphocytic leukemia. Leukemia 21, 53–60 (2007). https://doi.org/10.1038/sj.leu.2404456

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404456

Keywords

This article is cited by

Search

Quick links