Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A genetic mouse model for metastatic lung cancer with gender differences in survival

Abstract

Lung cancer is a devastating disease with poor prognosis. The design of better therapies for lung cancer patients would be greatly aided by good mouse models that closely resemble the human disease. Unfortunately, current models for lung adenocarcinoma are inadequate due to the absence of metastases. In this study, we incorporated both K-ras and p53 missense mutations into the mouse genome and established a more faithful genetic model for human lung adenocarcinoma, the most common type of lung cancer. Mice with both mutations developed advanced lung adenocarcinomas that were highly aggressive and metastasized to multiple intrathoracic and extrathoracic sites in a pattern similar to that of human lung cancer. These mice also showed a gender difference in cancer-related death. Additionally, the presence of both mutations induced pleural mesotheliomas in 23% of these mice. This mouse model recapitulates the metastatic nature of human lung cancer and will be invaluable to further probe the molecular basis of metastatic lung cancer and for translational studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Abutaily AS, Addis BJ, Roche WR . (2002). Immunohistochemistry in the distinction between malignant mesothelioma and pulmonary adenocarcinoma: a critical evaluation of new antibodies. J Clin Pathol 55: 662–668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bach PB, Kattan MW, Thornquist MD, Kris MG, Tate RC, Barnett MJ et al. (2003). Variations in lung cancer risk among smokers. J Natl Cancer Inst 95: 470–478.

    Article  PubMed  Google Scholar 

  • Bain C, Feskanich D, Speizer FE, Thun M, Hertzmark E, Rosner BA et al. (2004). Lung cancer rates in men and women with comparable histories of smoking. J Natl Cancer Inst 96: 826–834.

    Article  PubMed  Google Scholar 

  • Becher OJ, Holland EC . (2006). Genetically engineered models have advantages over xenografts for preclinical studies. Cancer Res 66: 3355–3358 discussion 3358–3359.

    Article  CAS  PubMed  Google Scholar 

  • Belinsky SA, Klinge DM, Stidley CA, Issa JP, Herman JG, March TH et al. (2003). Inhibition of DNA methylation and histone deacetylation prevents murine lung cancer. Cancer Res 63: 7089–7093.

    CAS  PubMed  Google Scholar 

  • Belinsky SA, Stefanski SA, Anderson MW . (1993). The A/J mouse lung as a model for developing new chemointervention strategies. Cancer Res 53: 410–416.

    CAS  PubMed  Google Scholar 

  • Castonguay A, Pepin P, Stoner GD . (1991). Lung tumorigenicity of NNK given orally to A/J mice: its application to chemopreventive efficacy studies. Exp Lung Res 17: 485–499.

    Article  CAS  PubMed  Google Scholar 

  • Chiba I, Takahashi T, Nau MM, D’Amico D, Curiel DT, Mitsudomi T et al. (1990). Mutations in the p53 gene are frequent in primary, resected non-small cell lung cancer. Lung Cancer Study Group. Oncogene 5: 1603–1610.

    CAS  PubMed  Google Scholar 

  • Greenblatt MS, Bennett WP, Hollstein M, Harris CC . (1994). Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54: 4855–4878.

    CAS  PubMed  Google Scholar 

  • Hecht SS, Morse MA, Eklind KI, Chung FL . (1991). A/J mouse lung tumorigenesis by the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and its inhibition by arylalkyl isothiocyanates. Exp Lung Res 17: 501–511.

    Article  CAS  PubMed  Google Scholar 

  • Hill R, Song Y, Cardiff RD, Van Dyke T . (2005). Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell 123: 1001–1011.

    Article  CAS  PubMed  Google Scholar 

  • Jackson EL, Olive KP, Tuveson DA, Bronson R, Crowley D, Brown M et al. (2005). The differential effects of mutant p53 alleles on advanced murine lung cancer. Cancer Res 65: 10280–10288.

    Article  CAS  PubMed  Google Scholar 

  • Jaurand MC . (2005). Mesothelioma pathogenesis, facts and expectations. Pathol Biol (Paris) 53: 41–44.

    Article  CAS  Google Scholar 

  • Johnson L, Mercer K, Greenbaum D, Bronson RT, Crowley D, Tuveson DA et al. (2001). Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410: 1111–1116.

    Article  CAS  PubMed  Google Scholar 

  • Kerr KM, Lamb D, Wathen CG, Walker WS, Douglas NJ . (1992). Pathological assessment of mediastinal lymph nodes in lung cancer: implications for non-invasive mediastinal staging. Thorax 47: 337–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitamura H, Kameda Y, Ito T, Hayashi H . (1999). Atypical adenomatous hyperplasia of the lung. Implications for the pathogenesis of peripheral lung adenocarcinoma. Am J Clin Pathol 111: 610–622.

    Article  CAS  PubMed  Google Scholar 

  • Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM et al. (2004). Gain of function of a p53 hot spot mutation in a mouse model of Li–Fraumeni syndrome. Cell 119: 861–872.

    Article  CAS  PubMed  Google Scholar 

  • Liu G, McDonnell TJ, Montes de Oca Luna R, Kapoor M, Mims B, El-Naggar AK et al. (2000). High metastatic potential in mice inheriting a targeted p53 missense mutation. Proc Natl Acad Sci USA 97: 4174–4179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malkinson AM, You M . (1994). The intronic structure of cancer-related genes regulates susceptibility to cancer. Mol Carcinog 10: 61–65.

    Article  CAS  PubMed  Google Scholar 

  • Meuwissen R, Berns A . (2005). Mouse models for human lung cancer. Genes Dev 19: 643–664.

    Article  CAS  PubMed  Google Scholar 

  • Mitsudomi T, Steinberg SM, Nau MM, Carbone D, D’Amico D, Bodner S et al. (1992). p53 gene mutations in non-small-cell lung cancer cell lines and their correlation with the presence of ras mutations and clinical features. Oncogene 7: 171–180.

    CAS  PubMed  Google Scholar 

  • Nikitin AY, Alcaraz A, Anver MR, Bronson RT, Cardiff RD, Dixon D et al. (2004). Classification of proliferative pulmonary lesions of the mouse: recommendations of the mouse models of human cancers consortium. Cancer Res 64: 2307–2316.

    Article  CAS  PubMed  Google Scholar 

  • Olak J, Colson Y . (2004). Gender differences in lung cancer: have we really come a long way, baby? J Thorac Cardiovasc Surg 128: 346–351.

    Article  PubMed  Google Scholar 

  • Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT et al. (2004). Mutant p53 gain of function in two mouse models of Li–Fraumeni syndrome. Cell 119: 847–860.

    Article  CAS  PubMed  Google Scholar 

  • Ordonez NG . (2003). The immunohistochemical diagnosis of mesothelioma: a comparative study of epithelioid mesothelioma and lung adenocarcinoma. Am J Surg Pathol 27: 1031–1051.

    Article  PubMed  Google Scholar 

  • Payne S . (2001). ‘Smoke like a man, die like a man’?: a review of the relationship between gender, sex and lung cancer. Soc Sci Med 53: 1067–1080.

    Article  CAS  PubMed  Google Scholar 

  • Quint LE, Tummala S, Brisson LJ, Francis IR, Krupnick AS, Kazerooni EA et al. (1996). Distribution of distant metastases from newly diagnosed non-small cell lung cancer. Ann Thorac Surg 62: 246–250.

    Article  CAS  PubMed  Google Scholar 

  • Rodenhuis S, Slebos RJ . (1992). Clinical significance of ras oncogene activation in human lung cancer. Cancer Res 52(9 Suppl): 2665s–2669s.

    CAS  PubMed  Google Scholar 

  • Rodenhuis S, Slebos RJ, Boot AJ, Evers SG, Mooi WJ, Wagenaar SS et al. (1988). Incidence and possible clinical significance of K-ras oncogene activation in adenocarcinoma of the human lung. Cancer Res 48: 5738–5741.

    CAS  PubMed  Google Scholar 

  • Sadikot RT, Renwick DS, DaCosta P, Chalmers AG, Pearson SB . (1997). Breast metastasis from non-small cell lung cancer. South Med J 90: 1063–1064.

    Article  CAS  PubMed  Google Scholar 

  • Salgia R, Skarin AT . (1998). Molecular abnormalities in lung cancer. J Clin Oncol 16: 1207–1217.

    Article  CAS  PubMed  Google Scholar 

  • Sausville EA, Burger AM . (2006). Contributions of human tumor xenografts to anticancer drug development. Cancer Res 66: 3351–3354, discussion 3354.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Nau MM, Chiba I, Birrer MJ, Rosenberg RK, Vinocour M et al. (1989). p53: a frequent target for genetic abnormalities in lung cancer. Science 246: 491–494.

    Article  CAS  PubMed  Google Scholar 

  • Tamura A, Matsubara O, Yoshimura N, Kasuga T, Akagawa S, Aoki N . (1992). Cardiac metastasis of lung cancer. A study of metastatic pathways and clinical manifestations. Cancer 70: 437–442.

    Article  CAS  PubMed  Google Scholar 

  • Toyooka S, Tsuda T, Gazdar AF . (2003). The Tp53 gene, tobacco exposure, and lung cancer. Hum Mutat 21: 229–239.

    Article  CAS  PubMed  Google Scholar 

  • Vahakangas KH, Bennett WP, Castren K, Welsh JA, Khan MA, Blomeke B et al. (2001). p53 and K-ras mutations in lung cancers from former and never smoking women. Cancer Res 61: 4350–4356.

    CAS  PubMed  Google Scholar 

  • Wang Y, Zhang Z, Lubet RA, You M . (2006a). A mouse model for tumor progression of lung cancer in ras and p53 transgenic mice. Oncogene 25: 1277–1280.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhang Z, Yao R, Jia D, Wang D, Lubet RA et al. (2006b). Prevention of lung cancer progression by bexarotene in mouse models. Oncogene 25: 1320–1329.

    Article  CAS  PubMed  Google Scholar 

  • You M, Wang Y, Stoner G, You L, Maronpot R, Reynolds SH et al. (1992). Parental bias of Ki-ras oncogenes detected in lung tumors from mouse hybrids. Proc Natl Acad Sci USA 89: 5804–5808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zang EA, Wynder EL . (1996). Differences in lung cancer risk between men and women: examination of the evidence. J Natl Cancer Inst 88: 183–192.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Department of Defense, DAMD17-01-1-0689 and the Cancer Center Support Grant CA16672 from the NIH. We thank Tyler Jacks for the K-rasLA1/+ mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Lozano.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, S., El-Naggar, A., Kim, E. et al. A genetic mouse model for metastatic lung cancer with gender differences in survival. Oncogene 26, 6896–6904 (2007). https://doi.org/10.1038/sj.onc.1210493

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210493

Keywords

This article is cited by

Search

Quick links