Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Vasculogenic mimicry by bone marrow macrophages in patients with multiple myeloma

Abstract

Bone marrow macrophages of patients with active and nonactive multiple myeloma (MM), monoclonal gammopathies of undetermined significance (MGUS) and benign anemia (controls) were stimulated for 7 days with vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), and analysed for the expression of endothelial cell (EC) markers by reverse transcription (RT)–PCR, real-time RT–PCR, western blot and immunofluorescence. Their vasculogenic ability was investigated in vitro in a Matrigel assay and in vivo on bone marrow biopsies through dual immunofluorescence and confocal laser microscopy. Active MM macrophages exposed to VEGF and bFGF acquired EC markers and formed capillary-like structures mimicking paired bone marrow ECs (multiple myeloma patient-derived endothelial cells, MMECs), with major responsiveness compared to macrophages from nonactive MM, MGUS or controls. Bone marrow biopsies of active MM harbored ‘mosaic’ vessels, being formed by MMECs, EC-like macrophages and macrophages themselves. These figures were rare in nonactive MM and absent in MGUS or controls. Our data indicate that macrophages contribute to build neovessels in active MM through vasculogenic mimicry, and this ability proceeds parallel to progression of the plasma cell tumors. Macrophages may be a target for the MM antivascular treatment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Anghelina M, Krishnan P, Moldovan L, Moldovan NI . (2004). Monocytes and macrophages form branched cell columns in matrigel: implications for their role in neovascularization. Stem Cells Dev 13: 665–676.

    Article  CAS  PubMed  Google Scholar 

  • Anghelina M, Krishnan P, Moldovan L, Moldovan NI . (2006a). Monocytes/macrophages cooperate with progenitor cells during neovascularization and tissue repair: conversion of cell columns into fibrovascular bundles. Am J Pathol 168: 529–541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anghelina M, Moldovan L, Zabuawala T, Ostrowski MC, Moldovan NI . (2006b). A subpopulation of peritoneal macrophages form capillary like lumens and branching patterns in vitro. J Cell Mol Med 10: 708–715.

    Article  PubMed  Google Scholar 

  • Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marme D . (1996). Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor Flt-1. Blood 87: 3336–3343.

    CAS  PubMed  Google Scholar 

  • Baroni CD, Vitolo D, Remoti D, Biondi A, Pezzella F, Ruco LP et al. (1987). Immunohistochemical heterogeneity of macrophage subpopulations in human lymphoid tissues. Histopathology 11: 1029–1042.

    Article  CAS  PubMed  Google Scholar 

  • Bellamy WT, Richter L, Frutiger Y, Grogan TM . (1999). Expression of vascular endothelial growth factor and its receptors in hematological malignancies. Blood 59: 728–733.

    CAS  Google Scholar 

  • Bender AT, Ostenson CL, Giordano D, Beavo JA . (2004). Differentiation of human monocytes in vitro with granulocyte-macrophage colony-stimulating factor and macrophage colony-stimulating factor produces distinct changes in cGMP phosphodiesterase expression. Cell Signal 16: 365–374.

    Article  CAS  PubMed  Google Scholar 

  • Bender CM, Pao MM, Jones PA . (1998). Inhibition of DNA methylation by 5-aza-2′-deoxycytidine suppresses the growth of human tumor cell lines. Cancer Res 58: 95–101.

    CAS  PubMed  Google Scholar 

  • Cavallaro U, Liebner S, Dejana E . (2006). Endothelial cadherins and tumor angiogenesis. Exp Cell Res 312: 659–667.

    Article  CAS  PubMed  Google Scholar 

  • Conejo-Garcia JR, Buckanovich RJ, Benencia F, Courreges MC, Rubin SC, Carroll RG et al. (2005). Vascular leukocytes contribute to tumor vascularization. Blood 105: 679–681.

    Article  CAS  PubMed  Google Scholar 

  • Di Raimondo F, Azzaro MP, Palombo G, Bagnato S, Giustolisi G, Floridia P et al. (2000). Angiogenic factors in multiple myeloma: higher levels in bone marrow than in peripheral blood. Haematologica 85: 800–805.

    CAS  PubMed  Google Scholar 

  • Dome B, Hendrix MJ, Paku S, Tovari J, Timar J . (2007). Alternative vascularization mechanisms in cancer: pathology and therapeutic implications. Am J Pathol 170: 1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durie BG . (1986). Staging and kinetics of multiple myeloma. Semin Oncol 13: 300–309.

    CAS  PubMed  Google Scholar 

  • Fehrenbach H, Tews S, Fehrenbach A, Ochs M, Wittwer T, Wahlers T et al. (2005). Improved lung preservation relates to an increase in tubular myelin-associated surfactant protein A. Respir Res 6: 60–71.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandez Pujol B, Lucibello FC, Gehling UM, Lindemann K, Weidner N, Zuzarte ML et al. (2000). Endothelial-like cells derived from human CD14 positive monocytes. Differentiation 65: 287–300.

    Article  CAS  PubMed  Google Scholar 

  • Folkman J, Browder T, Palmblad J . (2001). Angiogenesis research: guidelines for translation to clinical application. Thromb Haemost 86: 23–33.

    Article  CAS  PubMed  Google Scholar 

  • Fong GH, Rossant J, Gertsenstein M, Breitman ML . (1995). Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376: 66–70.

    Article  CAS  PubMed  Google Scholar 

  • Fujiyama S, Amano K, Uehira K, Yoshida M, Nishiwaki Y, Nozawa Y et al. (2003). Bone marrow monocyte lineage cells adhere on injured endothelium in a monocyte chemoattractant protein-1-dependent manner and accelerate reendothelialization as endothelial progenitor cells. Circ Res 93: 980–989.

    Article  CAS  PubMed  Google Scholar 

  • Gendron RL, Tsai FY, Paradis H, Arceci RJ . (1996). Induction of embryonic vasculogenesis by bFGF and LIF in vitro and in vivo. Dev Biol 177: 332–346.

    Article  CAS  PubMed  Google Scholar 

  • Goto F, Goto K, Weindel K, Folkman J . (1993). Synergistic effects of vascular endothelial growth factor and basic fibroblast growth factor on the proliferation and cord formation of bovine capillary endothelial cells within collagen gels. Lab Invest 69: 508–517.

    CAS  PubMed  Google Scholar 

  • Guidolin D, Vacca A, Nussdorfer GG, Ribatti D . (2004). A new image analysis method based on topological and fractal parameters to evaluate the angiostatic activity of docetaxel by using the Matrigel assay in vitro. Microvasc Res 67: 117–124.

    Article  CAS  PubMed  Google Scholar 

  • Hart DN . (1997). Dendritic cells: unique leukocyte populations which control the primary immune response. Blood 90: 3245–3287.

    CAS  PubMed  Google Scholar 

  • International Myeloma Working Group (2003). Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br J Haematol 121: 749–757.

    Article  Google Scholar 

  • Kerjaschki D, Huttary N, Raab I, Regele H, Bojarski-Nagy K, Bartel G et al. (2006). Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat Med 12: 230–234.

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Witzig TE, Timm M, Haug J, Wellik L, Kimlinger TK et al. (2004). Bone marrow angiogenic ability and expression of angiogenic cytokines in myeloma: evidence favoring loss of marrow angiogenesis inhibitory activity with disease progression. Blood 104: 1159–1165.

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD . (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)). Methods 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe’er J et al. (1999). Vascular tunnel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 155: 739–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama K, Asai J, Ii M, Thorne T, Losordo DW, D’Amore PA . (2007). Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing. Am J Pathol 170: 1178–1191.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moldovan NI . (2005). Functional adaptation: the key to plasticity of cardiovascular ‘stem’ cells? Stem Cells Dev 14: 111–121.

    Article  PubMed  Google Scholar 

  • Moldovan NI, Goldschmidt-Clermont PJ, Parker-Thornburg J, Shapiro SD, Kolattukudy E . (2000). Contribution of moncytes/macrophages to compensatory neovascularization: the drilling of metalloelastase-positive tunnels in ischemic myocardium. Circ Res 87: 378–384.

    Article  CAS  PubMed  Google Scholar 

  • Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M et al. (2000). Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood 95: 952–958.

    CAS  PubMed  Google Scholar 

  • Pepper MS, Ferrara N, Orci L, Montesano R . (1992). Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem Biophys Res Commun 189: 824–831.

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar SV, Fonseca R, Witzig TE, Gertz MA, Greipp PR . (1999). Bone marrow angiogenesis in patients achieving complete response after stem cell transplantation for multiple myeloma. Leukemia 13: 469–472.

    Article  CAS  PubMed  Google Scholar 

  • Ramprasad MP, Terpstra V, Kondratenko N, Quehenberger O, Steinberg D . (1996). Cell surface expression of mouse macrosialin and human CD68 and their role as macrophage receptors for oxidized low density lipoprotein. Proc Natl Acad Sci USA 93: 14833–14838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehman J, Li J, Orschell CM, March KL . (2003). Peripheral blood ‘endothelial progenitor cells’ are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107: 1164–1169.

    Article  PubMed  Google Scholar 

  • Ribatti D, Nico B, Vacca A . (2006). Importance of the bone marrow microenvironment in inducing the angiogenic response in multiple myeloma. Oncogene 25: 4257–4266.

    Article  CAS  PubMed  Google Scholar 

  • Risau W, Sariola H, Zerwes HG, Sasse J, Ekblom P, Kemler R et al. (1988). Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development 102: 471–478.

    CAS  PubMed  Google Scholar 

  • Schmeisser A, Garlichs CD, Zhang H, Eskafi S, Graffy C, Ludwig J et al. (2001). Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel® under angiogenic conditions. Cardiovasc Res 49: 671–680.

    Article  CAS  PubMed  Google Scholar 

  • Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci G, Robbins ES et al. (1998). Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol 141: 1659–1673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shalaby F, Ho J, Stanford WL, Fischer KD, Schuh AC, Schwartz L et al. (1999). A requirement for Flk-1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 89: 981–990.

    Article  Google Scholar 

  • Vacca A, Ria R, Semeraro F, Merchionne F, Coluccia M, Boccarelli A et al. (2003). Endothelial cells in the bone marrow of patients with multiple myeloma. Blood 102: 3340–3348.

    Article  CAS  PubMed  Google Scholar 

  • Vacca A, Ribatti D, Presta M, Minischetti M, Iurlaro M, Ria R et al. (1999). Bone marrow neovascularization, plasma cell angiogenic potential and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood 93: 3064–3073.

    CAS  PubMed  Google Scholar 

  • Vacca A, Scavelli C, Montefusco V, Di Pietro G, Neri A, Mattioli M et al. (2005). Thalidomide down-regulates angiogenic genes in bone marrow endothelial cells of patients with active multiple myeloma. J Clin Oncol 23: 5334–5346.

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Vakil V, Braunstein M, Smith EL, Maroney J, Chen L et al. (2005). Circulating endothelial progenitor cells in multiple myeloma: implications and significance. Blood 105: 3286–3294.

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Glesne D, Huberman E . (2003). A human peripheral blood monocyte-derived subset acts as pluripotent stem cells. Proc Natl Acad Sci USA 100: 2426–2431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The technical assistance of Mrs Milena Rizzi is greatly appreciated. This work was supported by Associazione Italiana per la Ricerca sul Cancro (AIRC, National and Regional Funds), Milan, Ministry of Education, Universities and Research (MIUR, PRIN Projects 2005, Project CARSO no 72/2), and Ministry for Health—Regione Puglia (grant BS2 and ‘Convenzione n. 131/Ricerca Finalizzata IRCCS’), Rome, Italy. T Ci is recipient of a fellowship from Fondazione Italiana per la Ricerca sul Cancro (FIRC), Milan, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Vacca.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scavelli, C., Nico, B., Cirulli, T. et al. Vasculogenic mimicry by bone marrow macrophages in patients with multiple myeloma. Oncogene 27, 663–674 (2008). https://doi.org/10.1038/sj.onc.1210691

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210691

Keywords

This article is cited by

Search

Quick links