Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Radiation therapy and Toll-like receptor signaling: implications for the treatment of cancer

Abstract

The identification of pathogen-associated molecular patterns, conserved microbial structures that act on Toll-like receptors, has led to a novel avenue of investigation aimed at developing a new generation of cancer immunotherapies. Ligation of Toll-like receptors results in the induction of robust immune responses that may be directed against tumor-associated antigens. Recent data suggest that such strategies may result in enhanced antitumor immunity. Nonetheless, as clinically effective immunotherapy for cancer remains a somewhat distant goal, attention has shifted toward multimodality approaches to cancer therapy, sometimes combining novel immune interventions and conventional treatments. The traditional view of radiation therapy as immunosuppressive has now been challenged, prompting a re-evaluation of its potential as an adjunct to immunotherapy. Radiation therapy can enhance the expression of tumor-associated antigens, induce immune-mediated targeting of tumor stroma, and diminish regulatory T cell activity. Recent evidence suggests that radiation therapy may also activate effectors of innate immunity through TLR-dependent mechanisms, thereby augmenting the adaptive immune response to cancer. In this paper, we will review evidence for enhanced tumor-directed immunity resulting from radiation exposure and early promising data suggesting synergistic effects of radiation and TLR-targeted immunotherapies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Acker JC, Marks LB, Spencer DP, Yang W, Avery MA, Dodge RK et al. (1998). Serial in vivo observations of cerebral vasculature after treatment with a large single fraction of radiation. Radiat Res 149: 350–359.

    Article  CAS  Google Scholar 

  • Akira S, Takeda K . (2004). Toll-like receptor signalling. Nat Rev Immunol 4: 499–511.

    Article  CAS  Google Scholar 

  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA . (2001). Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413: 732–738.

    Article  CAS  Google Scholar 

  • Ambach A, Bonnekoh B, Nguyen M, Schon MP, Gollnick H . (2004). Imiquimod, a Toll-like receptor-7 agonist, induces perforin in cytotoxic T lymphocytes in vitro. Mol Immunol 40: 1307–1314.

    Article  CAS  Google Scholar 

  • Antony PA, Piccirillo CA, Akpinarli A, Finkelstein SE, Speiss PJ, Surman DR et al. (2005). CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J Immunol 174: 2591–2601.

    Article  CAS  Google Scholar 

  • Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A et al. (2007). Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13: 1050–1059.

    Article  CAS  Google Scholar 

  • Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK . (2000). Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 12: 1539–1546.

    Article  CAS  Google Scholar 

  • Bourquin C, Schreiber S, Beck S, Hartmann G, Endres S . (2006). Immunotherapy with dendritic cells and CpG oligonucleotides can be combined with chemotherapy without loss of efficacy in a mouse model of colon cancer. Int J Cancer 118: 2790–2795.

    Article  CAS  Google Scholar 

  • Cao MD, Chen ZD, Xing Y . (2004). Gamma irradiation of human dendritic cells influences proliferation and cytokine profile of T cells in autologous mixed lymphocyte reaction. Cell Biol Int 28: 223–228.

    Article  CAS  Google Scholar 

  • Cao ZA, Daniel D, Hanahan D . (2002). Sub-lethal radiation enhances anti-tumor immunotherapy in a transgenic mouse model of pancreatic cancer. BMC Cancer 2: 11.

    Article  Google Scholar 

  • Chakraborty M, Abrams SI, Camphausen K, Liu K, Scott T, Coleman CN et al. (2003). Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy. J Immunol 170: 6338–6347.

    Article  CAS  Google Scholar 

  • Chakraborty M, Abrams SI, Coleman CN, Camphausen K, Schlom J, Hodge JW . (2004). External beam radiation of tumors alters phenotype of tumor cells to render them susceptible to vaccine-mediated T-cell killing. Cancer Res 64: 4328–4337.

    Article  CAS  Google Scholar 

  • Chakravarty PK, Alfieri A, Thomas EK, Beri V, Tanaka KE, Vikram B et al. (1999). Flt3-ligand administration after radiation therapy prolongs survival in a murine model of metastatic lung cancer. Cancer Res 59: 6028–6032.

    CAS  Google Scholar 

  • Chakravarty PK, Guha C, Alfieri A, Beri V, Niazova Z, Deb NJ et al. (2006). Flt3L therapy following localized tumor irradiation generates long-term protective immune response in metastatic lung cancer: its implication in designing a vaccination strategy. Oncology 70: 245–254.

    Article  CAS  Google Scholar 

  • Chiang CS, Hong JH, Wu YC, McBride WH, Dougherty GJ . (2000). Combining radiation therapy with interleukin-3 gene immunotherapy. Cancer Gene Ther 7: 1172–1178.

    Article  CAS  Google Scholar 

  • Cole S . (1986). Long-term effects of local ionizing radiation treatment on Langerhans cells in mouse footpad epidermis. J Invest Dermatol 87: 608–612.

    Article  CAS  Google Scholar 

  • Czerniecki BJ, Koski GK, Koldovsky U, Xu S, Cohen PA, Mick R et al. (2007). Targeting HER-2/neu in early breast cancer development using dendritic cells with staged interleukin-12 burst secretion. Cancer Res 67: 1842–1852.

    Article  CAS  Google Scholar 

  • Demaria S, Bhardwaj N, McBride WH, Formenti SC . (2005a). Combining radiotherapy and immunotherapy: a revived partnership. Int J Radiat Oncol Biol Phys 63: 655–666.

    Article  Google Scholar 

  • Demaria S, Kawashima N, Yang AM, Devitt ML, Babb JS, Allison JP et al. (2005b). Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res 11: 728–734.

    CAS  Google Scholar 

  • Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L et al. (2004). Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys 58: 862–870.

    Article  Google Scholar 

  • Dunn GP, Old LJ, Schreiber RD . (2004). The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21: 137–148.

    Article  CAS  Google Scholar 

  • Dunn PL, North RJ . (1991). Selective radiation resistance of immunologically induced T cells as the basis for irradiation-induced T-cell-mediated regression of immunogenic tumor. J Leukoc Biol 49: 388–396.

    Article  CAS  Google Scholar 

  • Gallucci S, Lolkema M, Matzinger P . (1999). Natural adjuvants: endogenous activators of dendritic cells. Nat Med 5: 1249–1255.

    Article  CAS  Google Scholar 

  • Hallahan DE, Virudachalam S . (1999). Accumulation of P-selectin in the lumen of irradiated blood vessels. Radiat Res 152: 6–13.

    Article  CAS  Google Scholar 

  • Hallahan DE, Spriggs DR, Beckett MA, Kufe DW, Weichselbaum RR . (1989). Increased tumor necrosis factor alpha mRNA after cellular exposure to ionizing radiation. Proc Natl Acad Sci USA 86: 10104–10107.

    Article  CAS  Google Scholar 

  • Hallahan DE, Staba-Hogan MJ, Virudachalam S, Kolchinsky A . (1998). X-ray-induced P-selectin localization to the lumen of tumor blood vessels. Cancer Res 58: 5216–5220.

    CAS  Google Scholar 

  • Hareyama M, Imai K, Kubo K, Takahashi H, Koshiba H, Hinoda Y et al. (1991). Effect of radiation on the expression of carcinoembryonic antigen of human gastric adenocarcinoma cells. Cancer 67: 2269–2274.

    Article  CAS  Google Scholar 

  • Hashimoto C, Hudson KL, Anderson KV . (1988). The toll gene of drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52: 269–279.

    Article  CAS  Google Scholar 

  • Hashimoto S, Shirato H, Hosokawa M, Nishioka T, Kuramitsu Y, Matushita K et al. (1999). The suppression of metastases and the change in host immune response after low-dose total-body irradiation in tumor-bearing rats. Radiat Res 151: 717–724.

    Article  CAS  Google Scholar 

  • Hauser SH, Calorini L, Wazer DE, Gattoni-Celli S . (1993). Radiation-enhanced expression of major histocompatibility complex class I antigen H-2Db in B16 melanoma cells. Cancer Res 53: 1952–1955.

    CAS  Google Scholar 

  • Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H et al. (2000). A toll-like receptor recognizes bacterial DNA. Nature 408: 740–745.

    Article  CAS  Google Scholar 

  • Hong JH, Chiang CS, Tsao CY, Lin PY, McBride WH, Wu CJ . (1999). Rapid induction of cytokine gene expression in the lung after single and fractionated doses of radiation. Int J Radiat Biol 75: 1421–1427.

    Article  CAS  Google Scholar 

  • Ina Y, Sakai K . (2005). Activation of immunological network by chronic low-dose-rate irradiation in wild-type mouse strains: analysis of immune cell populations and surface molecules. Int J Radiat Biol 81: 721–729.

    Article  CAS  Google Scholar 

  • Ishihara H, Tanaka I, Nemoto K, Tsuneoka K, Cheeramakara C, Yoshida K et al. (1995). Immediate-early, transient induction of the interleukin-1 beta gene in mouse spleen macrophages by ionizing radiation. J Radiat Res (Tokyo) 36: 112–124.

    Article  CAS  Google Scholar 

  • James RF, Lake SP, Chamberlain J, Thirdborough S, Bassett PD, Mistry N et al. (1989). Gamma irradiation of isolated rat islets pretransplantation produces indefinite allograft survival in cyclosporine-treated recipients. Transplantation 47: 929–933.

    Article  CAS  Google Scholar 

  • Janeway Jr CA, Medzhitov R . (2002). Innate immune recognition. Annu Rev Immunol 20: 197–216.

    Article  CAS  Google Scholar 

  • Johnson GB, Brunn GJ, Kodaira Y, Platt JL . (2002). Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. J Immunol 168: 5233–5239.

    Article  CAS  Google Scholar 

  • Kim KW, Kim SH, Shin JG, Kim GS, Son YO, Park SW et al. (2004). Direct injection of immature dendritic cells into irradiated tumor induces efficient antitumor immunity. Int J Cancer 109: 685–690.

    Article  CAS  Google Scholar 

  • Kochling J, Konig-Merediz SA, Stripecke R, Buchwald D, Korte A, Von Einsiedel HG et al. (2003). Protection of mice against Philadelphia chromosome-positive acute lymphoblastic leukemia by cell-based vaccination using nonviral, minimalistic expression vectors and immunomodulatory oligonucleotides. Clin Cancer Res 9: 3142–3149.

    Google Scholar 

  • Krieg AM . (2007). Development of TLR9 agonists for cancer therapy. J Clin Invest 117: 1184–1194.

    Article  CAS  Google Scholar 

  • Lake RA, Robinson BW . (2005). Immunotherapy and chemotherapy—a practical partnership. Nat Rev Cancer 5: 397–405.

    Article  CAS  Google Scholar 

  • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA . (1996). The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86: 973–983.

    Article  CAS  Google Scholar 

  • Liao YP, Wang CC, Butterfield LH, Economou JS, Ribas A, Meng WS et al. (2004). Ionizing radiation affects human MART-1 melanoma antigen processing and presentation by dendritic cells. J Immunol 173: 2462–2469.

    Article  CAS  Google Scholar 

  • Liu HM, Newbrough SE, Bhatia SK, Dahle CE, Krieg AM, Weiner GJ . (1998). Immunostimulatory CpG oligodeoxynucleotides enhance the immune response to vaccine strategies involving granulocyte-macrophage colony-stimulating factor. Blood 92: 3730–3736.

    CAS  Google Scholar 

  • Lohr F, Hu K, Haroon Z, Samulski TV, Huang Q, Beaty J et al. (2000). Combination treatment of murine tumors by adenovirus-mediated local B7/IL12 immunotherapy and radiotherapy. Mol Ther 2: 195–203.

    Article  CAS  Google Scholar 

  • Macagno A, Napolitani G, Lanzavecchia A, Sallusto F . (2007). Duration, combination and timing: the signal integration model of dendritic cell activation. Trends Immunol 28: 227–233.

    Article  CAS  Google Scholar 

  • Mason KA, Ariga H, Neal R, Valdecanas D, Hunter N, Krieg AM et al. (2005). Targeting toll-like receptor 9 with CpG oligodeoxynucleotides enhances tumor response to fractionated radiotherapy. Clin Cancer Res 11: 361–369.

    CAS  Google Scholar 

  • McBride WH, Chiang CS, Olson JL, Wang CC, Hong JH, Pajonk F et al. (2004). A sense of danger from radiation. Radiat Res 162: 1–19.

    Article  CAS  Google Scholar 

  • Medzhitov R, Janeway Jr CA . (2002). Decoding the patterns of self and nonself by the innate immune system. Science 296: 298–300.

    Article  CAS  Google Scholar 

  • Medzhitov R, Preston-Hurlburt P, Janeway Jr CA . (1997). A human homologue of the drosophila toll protein signals activation of adaptive immunity. Nature 388: 394–397.

    Article  CAS  Google Scholar 

  • Merrick A, Errington F, Milward K, O'Donnell D, Harrington K, Bateman A et al. (2005). Immunosuppressive effects of radiation on human dendritic cells: reduced IL-12 production on activation and impairment of naive T-cell priming. Br J Cancer 92: 1450–1458.

    Article  CAS  Google Scholar 

  • Milas L, Mason KA, Ariga H, Hunter N, Neal R, Valdecanas D et al. (2004). CpG oligodeoxynucleotide enhances tumor response to radiation. Cancer Res 64: 5074–5077.

    Article  CAS  Google Scholar 

  • Miller GM, Kim DW, Andres ML, Green LM, Gridley DS . (2003). Changes in the activation and reconstitution of lymphocytes resulting from total-body irradiation correlate with slowed tumor growth. Oncology 65: 229–241.

    Article  Google Scholar 

  • Nemoto K, Ishihara H, Tanaka I, Suzuki G, Tsuneoka K, Yoshida K et al. (1995). Expression of IL-1 beta mRNA in mice after whole body X-irradiation. J Radiat Res (Tokyo) 36: 125–133.

    Article  CAS  Google Scholar 

  • Nikitina EY, Gabrilovich DI . (2001). Combination of gamma-irradiation and dendritic cell administration induces a potent antitumor response in tumor-bearing mice: approach to treatment of advanced stage cancer. Int J Cancer 94: 825–833.

    Article  CAS  Google Scholar 

  • North RJ . (1986). Radiation-induced, immunologically-mediated regression of an established tumor as an example of successful therapeutic immunomanipulation. Preferential elimination of suppressor T cells allows sustained production of effector T cells. J Exp Med 164: 1652–1666.

    Article  CAS  Google Scholar 

  • Paulos CM, Wrzesinski C, Kaiser A, Hinrichs CS, Chieppa M, Cassard L et al. (2007). Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8 T cells via TLR4 signaling. J Clin Invest 117: 2197–2204.

    Article  CAS  Google Scholar 

  • Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X et al. (1998). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282: 2085–2088.

    Article  CAS  Google Scholar 

  • Rabinovich GA, Gabrilovich D, Sotomayor EM . (2007). Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25: 267–296.

    Article  CAS  Google Scholar 

  • Sauter B, Albert ML, Francisco L, Larsson M, Somersan S, Bhardwaj N . (2000). Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med 191: 423–434.

    Article  CAS  Google Scholar 

  • Scheffer SR, Nave H, Korangy F, Schlote K, Pabst R, Jaffee EM et al. (2003). Apoptotic, but not necrotic, tumor cell vaccines induce a potent immune response in vivo. Int J Cancer 103: 205–211.

    Article  CAS  Google Scholar 

  • Schreiber RD . (2005). Cancer vaccines 2004 opening address: the molecular and cellular basis of cancer immunosurveillance and immunoediting. Cancer Immun 5 (Suppl 1): 1.

    Google Scholar 

  • Seetharam S, Staba MJ, Schumm LP, Schreiber K, Schreiber H, Kufe DW et al. (1999). Enhanced eradication of local and distant tumors by genetically produced interleukin-12 and radiation. Int J Oncol 15: 769–773.

    CAS  Google Scholar 

  • Shi Y, White D, He L, Miller RL, Spaner DE . (2007). Toll-like receptor-7 tolerizes malignant B cells and enhances killing by cytotoxic agents. Cancer Res 67: 1823–1831.

    Article  CAS  Google Scholar 

  • Shigematsu A, Adachi Y, Koike-Kiriyama N, Suzuki Y, Iwasaki M, Koike Y et al. (2007). Effects of low-dose irradiation on enhancement of immunity by dendritic cells. J Radiat Res (Tokyo) 48: 51–55.

    Article  CAS  Google Scholar 

  • Tsuji S, Matsumoto M, Takeuchi O, Akira S, Azuma I, Hayashi A et al. (2000). Maturation of human dendritic cells by cell wall skeleton of mycobacterium bovis bacillus Calmette-Guerin: involvement of toll-like receptors. Infect Immun 68: 6883–6890.

    Article  CAS  Google Scholar 

  • van Duin D, Medzhitov R, Shaw AC . (2006). Triggering TLR signaling in vaccination. Trends Immunol 27: 49–55.

    Article  CAS  Google Scholar 

  • Wallin RP, Lundqvist A, More SH, von Bonin A, Kiessling R, Ljunggren HG . (2002). Heat-shock proteins as activators of the innate immune system. Trends Immunol 23: 130–135.

    Article  CAS  Google Scholar 

  • Wasserman J, Blomgren H, Rotstein S, Petrini B, Hammarstrom S . (1989). Immunosuppression in irradiated breast cancer patients: in vitro effect of cyclooxygenase inhibitors. Bull N Y Acad Med 65: 36–44.

    CAS  Google Scholar 

  • Weichselbaum RR, Hallahan DE, Beckett MA, Mauceri HJ, Lee H, Sukhatme VP et al. (1994). Gene therapy targeted by radiation preferentially radiosensitizes tumor cells. Cancer Res 54: 4266–4269.

    CAS  Google Scholar 

  • Wesa A, Kalinski P, Kirkwood JM, Tatsumi T, Storkus WJ . (2007). Polarized type-1 dendritic cells (DC1) producing high levels of IL-12 family members rescue patient TH1-type antimelanoma CD4+ T cell responses in vitro. J Immunother 30: 75–82.

    Article  CAS  Google Scholar 

  • Wrzesinski C, Paulos CM, Gattinoni L, Palmer DC, Kaiser A, Yu Z et al. (2007). Hematopoietic stem cells promote the expansion and function of adoptively transferred antitumor CD8 T cells. J Clin Invest 117: 492–501.

    Article  CAS  Google Scholar 

  • Xu S, Koldovsky U, Xu M, Wang D, Fitzpatrick E, Son G et al. (2006). High-avidity antitumor T-cell generation by toll receptor 8-primed, myeloid- derived dendritic cells is mediated by IL-12 production. Surgery 140: 170–178.

    Article  Google Scholar 

  • Xu S, Koski GK, Faries M, Bedrosian I, Mick R, Maeurer M et al. (2003). Rapid high efficiency sensitization of CD8+ T cells to tumor antigens by dendritic cells leads to enhanced functional avidity and direct tumor recognition through an IL-12-dependent mechanism. J Immunol 171: 2251–2261.

    Article  CAS  Google Scholar 

  • Zhang B, Bowerman NA, Salama JK, Schmidt H, Spiotto MT, Schietinger A et al. (2007). Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. J Exp Med 204: 49–55.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (R01-CA096997-02) and the American Cancer Society (RSG 99-029-04-LIB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B J Czerniecki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roses, R., Xu, M., Koski, G. et al. Radiation therapy and Toll-like receptor signaling: implications for the treatment of cancer. Oncogene 27, 200–207 (2008). https://doi.org/10.1038/sj.onc.1210909

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210909

Keywords

This article is cited by

Search

Quick links