Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The EWS/FLI1 oncogenic transcription factor deregulates GLI1

Abstract

Ewing family tumors (EFT), classically Ewing's sarcoma and peripheral primitive neuroectodermal tumor, share a common class of tumor-specific fusion genes thought to be key mediators of tumor biology. Here we demonstrate that the most common Ewing's fusion, EWS/FLI1, produces transcriptional upregulation of GLI1 and its direct transcriptional target PATCHED1 in a model transformation system. This deregulation of GLI1 is common to other EWS/ets chimera and depends on the functional transcriptional regulatory domains. Inhibition of GLI1 via RNAi or via overexpression of endogenous inhibitors results in a reduction of EWS/FLI1 transformation activity. Activation of GLI1 appears to occur in a Hedgehog-independent fashion as blockade of Hedgehog signaling has only a modest effect on EFT cells. We present evidence that EWS/FLI1 upregulation of cMYC may play a role in the upregulation of GLI1 in EWS/FLI1-transformed NIH3T3 cells. Finally, we demonstrate that observations made in a model transformation system translate to an Ewing cellular background. EFT cell lines express GLI1 and PATCHED and this expression is EWS/FLI1 dependent. Inhibition of GLI1 expression via RNAi results in reduced anchorage-independent growth in an EFT cell line. GLI1 appears to be a transcriptionally deregulated target of EWS/FLI1 that mediates a portion of its tumorigenic phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Alexandre C, Jacinto A, Ingham PW . (1996). Transcriptional activation of hedgehog target genes in Drosophila is mediated directly by the cubitus interruptus protein, a member of the GLI family of zinc finger DNA-binding proteins. Genes Dev 10: 2003–2013.

    Article  CAS  Google Scholar 

  • Anton Aparicio LM, Cassinello Espinosa J, Garcia Campelo R, Gomez Veiga F, Diaz Prado S, Aparicio Gallego G . (2007). Prostate carcinoma and stem cells. Clin Transl Oncol 9: 66–76.

    Article  CAS  Google Scholar 

  • Arvand A, Denny CT . (2001). Biology of EWS/ETS fusions in Ewing's family tumors. Oncogene 20: 5747–5754.

    Article  CAS  Google Scholar 

  • Bacci G, Picci P, Gitelis S, Borghi A, Campanacci M . (1982). The treatment of localized Ewing's sarcoma: the experience at the Istituto Ortopedico Rizzoli in 163 cases treated with and without adjuvant chemotherapy. Cancer 49: 1561–1570.

    Article  CAS  Google Scholar 

  • Bailey EC, Milenkovic L, Scott MP, Collawn JF, Johnson RL . (2002). Several PATCHED1 missense mutations display activity in patched1-deficient fibroblasts. J Biol Chem 277: 33632–33640.

    Article  CAS  Google Scholar 

  • Bailly RA, Bosselut R, Zucman J, Cormier F, Delattre O, Roussel M et al. (1994). DNA-binding and transcriptional activation properties of the EWS-FLI-1 fusion protein resulting from the t(11;22) translocation in Ewing sarcoma. Mol Cell Biol 14: 3230–3241.

    Article  CAS  Google Scholar 

  • Boyer Jr CW, Brickner Jr TJ, Perry RH . (1967). Ewing's sarcoma: case against surgery. Cancer 20: 1602–1606.

    Article  Google Scholar 

  • Braun BS, Frieden R, Lessnick SL, May WA, Denny CT . (1995). Identification of target genes for the Ewing's sarcoma EWS/FLI fusion protein by representational difference analysis. Mol Cell Biol 15: 4623–4630.

    Article  CAS  Google Scholar 

  • Brummelkamp TR, Bernards R, Agami R . (2002). A system for stable expression of short interfering RNAs in mammalian cells. Science 296: 550–553.

    Article  CAS  Google Scholar 

  • Chen JK, Taipale J, Cooper MK, Beachy PA . (2002). Inhibition of Hedgehog signaling by direct binding of cyclopamine to smoothened. Genes Dev 16: 2743–2748.

    Article  CAS  Google Scholar 

  • Cheng SY, Bishop JM . (2002). Suppressor of fused represses Gli-mediated transcription by recruiting the SAP18-mSin3 corepressor complex. Proc Natl Acad Sci USA 99: 5442–5447.

    Article  CAS  Google Scholar 

  • Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A . (2007). HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17: 165–172.

    Article  CAS  Google Scholar 

  • Dai P, Akimaru H, Tanaka Y, Maekawa T, Nakafuku M, Ishii S . (1999). Sonic Hedgehog-induced activation of the Gli1 promoter is mediated by GLI3. J Biol Chem 274: 8143–8152.

    Article  CAS  Google Scholar 

  • Dauphinot L, De Oliveira C, Melot T, Sevenet N, Thomas V, Weissman BE et al. (2001). Analysis of the expression of cell cycle regulators in Ewing cell lines: EWS-FLI-1 modulates p57KIP2 and c-Myc expression. Oncogene 20: 3258–3265.

    Article  CAS  Google Scholar 

  • Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M et al. (1992). Gene fusion with an ETS DNA-binding domain caused by translocation in human tumours. Nature 359: 162–165.

    Article  CAS  Google Scholar 

  • Di Marcotullio L, Ferretti E, Greco A, De Smaele E, Po A, Sico MA et al. (2006). Numb is a suppressor of Hedgehog signalling and targets Gli1 for Itch-dependent ubiquitination. Nat Cell Biol 8: 1415–1423.

    Article  CAS  Google Scholar 

  • Guney I, Wu S, Sedivy JM . (2006). Reduced c-Myc signaling triggers telomere-independent senescence by regulating Bmi-1 and p16 (INK4a). Proc Natl Acad Sci USA 103: 3645–3650.

    Article  CAS  Google Scholar 

  • Hatton BA, Knoepfler PS, Kenney AM, Rowitch DH, de Alboran IM, Olson JM et al. (2006). N-myc is an essential downstream effector of Shh signaling during both normal and neoplastic cerebellar growth. Cancer Res 66: 8655–8661.

    Article  CAS  Google Scholar 

  • Hepker J, Wang QT, Motzny CK, Holmgren R, Orenic TV . (1997). Drosophila cubitus interruptus forms a negative feedback loop with patched and regulates expression of Hedgehog target genes. Development 124: 549–558.

    CAS  Google Scholar 

  • Hu-Lieskovan S, Heidel JD, Bartlett DW, Davis ME, Triche TJ . (2005a). Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing's sarcoma. Cancer Res 65: 8984–8992.

    Article  CAS  Google Scholar 

  • Hu-Lieskovan S, Zhang J, Wu L, Shimada H, Schofield DE, Triche TJ . (2005b). EWS-FLI1 fusion protein up-regulates critical genes in neural crest development and is responsible for the observed phenotype of Ewing's family of tumors. Cancer Res 65: 4633–4644.

    Article  CAS  Google Scholar 

  • Huntzicker EG, Estay IS, Zhen H, Lokteva LA, Jackson PK, Oro AE . (2006). Dual degradation signals control Gli protein stability and tumor formation. Genes Dev 20: 276–281.

    Article  CAS  Google Scholar 

  • Jaishankar S, Zhang J, Roussel MF, Baker SJ . (1999). Transforming activity of EWS/FLI is not strictly dependent upon DNA-binding activity. Oncogene 18: 5592–5597.

    Article  CAS  Google Scholar 

  • Janknecht R . (2005). EWS-ETS oncoproteins: the linchpins of Ewing tumors. Gene 363: 1–14.

    Article  CAS  Google Scholar 

  • Kasper M, Regl G, Frischauf AM, Aberger F . (2006). GLI transcription factors: mediators of oncogenic Hedgehog signalling. Eur J Cancer 42: 437–445.

    Article  CAS  Google Scholar 

  • Kenney AM, Cole MD, Rowitch DH . (2003). Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development 130: 15–28.

    Article  CAS  Google Scholar 

  • Koch A, Waha A, Hartmann W, Milde U, Goodyer CG, Sorensen N et al. (2004). No evidence for mutations or altered expression of the suppressor of fused gene (SUFU) in primitive neuroectodermal tumours. Neuropathol Appl Neurobiol 30: 532–539.

    Article  CAS  Google Scholar 

  • Kogerman P, Grimm T, Kogerman L, Krause D, Unden AB, Sandstedt B et al. (1999). Mammalian suppressor-of-fused modulates nuclear-cytoplasmic shuttling of Gli-1. Nat Cell Biol 1: 312–319.

    Article  CAS  Google Scholar 

  • Lauth M, Bergstrom A, Toftgard R . (2007). Phorbol esters inhibit the Hedgehog signalling pathway downstream of suppressor of fused, but upstream of Gli. Oncogene 26: 5163–5168.

    Article  CAS  Google Scholar 

  • Lazar A, Abruzzo LV, Pollock RE, Lee S, Czerniak B . (2006). Molecular diagnosis of sarcomas: chromosomal translocations in sarcomas. Arch Pathol Lab Med 130: 1199–1207.

    CAS  Google Scholar 

  • Leung C, Lingbeek M, Shakhova O, Liu J, Tanger E, Saremaslani P et al. (2004). Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature 428: 337–341.

    Article  CAS  Google Scholar 

  • Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW et al. (2006). Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66: 6063–6071.

    Article  CAS  Google Scholar 

  • Lokker NA, Sullivan CM, Hollenbach SJ, Israel MA, Giese NA . (2002). Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors. Cancer Res 62: 3729–3735.

    CAS  Google Scholar 

  • Marigo V, Scott MP, Johnson RL, Goodrich LV, Tabin CJ . (1996). Conservation in hedgehog signaling: induction of a chicken patched homolog by Sonic hedgehog in the developing limb. Development 122: 1225–1233.

    CAS  Google Scholar 

  • May WA, Arvand A, Thompson AD, Braun BS, Wright M, Denny CT . (1997). EWS/FLI1-induced manic fringe renders NIH 3T3 cells tumorigenic. Nat Genet 17: 495–497.

    Article  CAS  Google Scholar 

  • May WA, Gishizky ML, Lessnick SL, Lunsford LB, Lewis BC, Delattre O et al. (1993). Ewing sarcoma 11;22 translocation produces a chimeric factor that requires the DNA-binding domain encoded by FLI1 for transformation. Proc Natl Acad Sci USA 90: 5752–5756.

    Article  CAS  Google Scholar 

  • Pizzo PA, Poplack DG Editors (2005). Principles and Practice of Pediatric Oncology. Lippincott Williams & Wilkins, Philadelphia and New York.

    Google Scholar 

  • Rao G, Pedone CA, Coffin CM, Holland EC, Fults DW . (2003). c-Myc enhances sonic hedgehog-induced medulloblastoma formation from nestin-expressing neural progenitors in mice. Neoplasia 5: 198–204.

    Article  CAS  Google Scholar 

  • Smith R, Owen LA, Trem DJ, Wong JS, Whangbo JS, Golub TR et al. (2006). Expression profiling of EWS/FLI identifies NKX2.2 as a critical target gene in Ewing's sarcoma. Cancer Cell 9: 405–416.

    Article  CAS  Google Scholar 

  • Stein U, Eder C, Karsten U, Haensch W, Walther W, Schlag PM . (1999). GLI gene expression in bone and soft tissue sarcomas of adult patients correlates with tumor grade. Cancer Res 59: 1890–1895.

    CAS  Google Scholar 

  • Svard J, Heby-Henricson K, Persson-Lek M, Rozell B, Lauth M, Bergstrom A et al. (2006). Genetic elimination of suppressor of fused reveals an essential repressor function in the mammalian Hedgehog signaling pathway. Dev Cell 10: 187–197.

    Article  Google Scholar 

  • Taylor MD, Liu L, Raffel C, Hui CC, Mainprize TG, Zhang X et al. (2002). Mutations in SUFU predispose to medulloblastoma. Nat Genet 31: 306–310.

    Article  CAS  Google Scholar 

  • Teitell MA, Thompson AD, Sorensen PH, Shimada H, Triche TJ, Denny CT . (1999). EWS/ETS fusion genes induce epithelial and neuroectodermal differentiation in NIH 3T3 fibroblasts. Lab Invest 79: 1535–1543.

    CAS  Google Scholar 

  • Welford SM, Hebert SP, Deneen B, Arvand A, Denny CT . (2001). DNA binding domain-independent pathways are involved in EWS/FLI1-mediated oncogenesis. J Biol Chem 276: 41977–41984.

    Article  CAS  Google Scholar 

  • Xie J, Aszterbaum M, Zhang X, Bonifas JM, Zachary C, Epstein E et al. (2001). A role of PDGFRalpha in basal cell carcinoma proliferation. Proc Natl Acad Sci USA 98: 9255–9259.

    Article  CAS  Google Scholar 

  • Zhou JX, Jia LW, Liu WM, Miao CL, Liu S, Cao YJ et al. (2006). Role of sonic hedgehog in maintaining a pool of proliferating stem cells in the human fetal epidermis. Hum Reprod 21: 1698–1704.

    Article  CAS  Google Scholar 

  • Zwerner JP, May WA . (2001). PDGF-C is an EWS/FLI induced transforming growth factor in Ewing family tumors. Oncogene 20: 626–633.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support for this work was provided by the American Cancer Society (RPG-99-096-01), the National Cancer Institute (CA90666) and by the TJ Martell Foundation (WAM). We acknowledge Dr Evans Bailey for providing constructs and probes for northern blots and for technical assistance and of Dr Elizabeth Lawlor and Dr Michael Anderson for critical evaluation of the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W A May.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zwerner, J., Joo, J., Warner, K. et al. The EWS/FLI1 oncogenic transcription factor deregulates GLI1. Oncogene 27, 3282–3291 (2008). https://doi.org/10.1038/sj.onc.1210991

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210991

Keywords

This article is cited by

Search

Quick links