Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genetic modulation of the Let-7 microRNA binding to KRAS 3′-untranslated region and survival of metastatic colorectal cancer patients treated with salvage cetuximab–irinotecan

Abstract

There is increasing evidence that the Let-7 microRNA (miRNA) exerts an effect as a tumor suppressor by targeting the KRAS mRNA. The Let-7 complementary site (LCS6) T>G variant in the KRAS 3′-untranslated region weakens Let-7 binding. We analyzed whether the LCS6 variant may be clinically relevant to patients with metastatic colorectal cancer (MCRC) treated with anti-epidermal growth factor receptor (EGFR) therapy. LCS6 genotypes and KRAS/BRAF mutations were determined in the tumor DNA of 134 patients with MCRC who underwent salvage cetuximab–irinotecan therapy. There were 34 G-allele (T/G+G/G) carriers (25%) and 100 T/T genotype carriers (75%). G-allele carriers were significantly more frequent in the KRAS mutation group than in patients with KRAS wild type (P=0.004). In the 121 patients without BRAF V600E mutation, overall survival (OS) and progression-free survival (PFS) times were compared between carriers of the LCS6 G-allele genotypes and carriers of the wild-type T/T genotype. LCS6 G-allele carriers showed worse OS (P=0.001) and PFS (P=0.004) than T/T genotype carriers (confirmed in the multivariate model including the KRAS status). In the exploratory analysis of the 55 unresponsive patients with KRAS mutation, LCS6 G-allele carriers showed adverse OS and PFS times. These findings deserve additional investigations as they may open novel perspectives for the treatment of patients with MCRC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Ambros V . The evolution of our thinking about microRNAs. Nat Med 2008; 14: 1036–1040.

    Article  CAS  PubMed  Google Scholar 

  2. Visone R, Croce CM . MiRNAs and cancer. Am J Pathol 2009; 174: 1131–1138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schickel R, Boyerinas B, Park SM, Peter ME . MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 2008; 27: 5959–5974.

    Article  CAS  PubMed  Google Scholar 

  4. Lee YH, Dutta A . MicroRNAs: small but potent oncogenes or tumor suppressors. Curr Opin Investig Drugs 2006; 7: 560–564.

    CAS  PubMed  Google Scholar 

  5. Roush S, Slack FJ . The let-7 family of microRNAs. Trends Cell Biol 2008; 18: 505–516.

    Article  CAS  PubMed  Google Scholar 

  6. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al. RAS is regulated by the let-7 microRNA family. Cell 2005; 120: 635–647.

    Article  CAS  PubMed  Google Scholar 

  7. Jérôme T, Laurie P, Louis B, Pierre C . Enjoy the silence: the story of let-7 microRNA and cancer. Curr Genomics 2007; 8: 229–233.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D et al. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 2007; 67: 7713–7722.

    Article  CAS  PubMed  Google Scholar 

  9. Kumar MS, Erkeland SJ, Pester RE, Chen CY, Ebert MS, Sharp PA et al. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci USA 2008; 105: 3903–3908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Akao Y, Nakagawa Y, Naoe T . let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull 2006; 29: 903–906.

    Article  CAS  PubMed  Google Scholar 

  11. Mishra PJ, Bertino JR . MicroRNA polymorphisms: the future of pharmacogenomics, molecular epidemiology and individualized medicine. Pharmacogenomics 2009; 10: 399–416.

    Article  CAS  PubMed  Google Scholar 

  12. Chin LJ, Ratner E, Leng S, Zhai R, Nallur S, Babar I et al. A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk. Cancer Res 2008; 68: 8535–8540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Christensen BC, Moyer BJ, Avissar M, Ouellet LG, Plaza S, McClean MD et al. A let-7 microRNA binding site polymorphism in the KRAS 3′ UTR is associated with reduced survival in oral cancers. Carcinogenesis 2009; 30: 1003–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Di Nicolantonio F, Martini M, Molinari F, Sartore-Bianchi A, Arena S, Saletti P et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 2008; 26: 5705–5712.

    Article  CAS  PubMed  Google Scholar 

  15. Linardou H, Dahabreh IJ, Kanaloupiti D, Siannis F, Bafaloukos D, Kosmidis P et al. Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol 2008; 9: 962–972.

    Article  CAS  PubMed  Google Scholar 

  16. Allegra CJ, Jessup JM, Somerfield MR, Hamilton SR, Hammond EH, Hayes DF et al. American society of clinical oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol 2009; 27: 2091–2096.

    Article  PubMed  Google Scholar 

  17. Osier MV, Cheung KH, Kidd JR, Pakstis AJ, Miller PL, Kidd KK . ALFRED: an allele frequency database for diverse populations and DNA polymorphisms—an update. Nucleic Acids Res 2001; 29: 317–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shell S, Park SM, Radjabi AR, Schickel R, Kistner EO, Jewell DA et al. Let-7 expression defines two differentiation stages of cancer. Proc Natl Acad Sci USA 2007; 104: 11400–11405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ding XC, Slack FJ, Grosshans H . The let-7 microRNA interfaces extensively with the translation machinery to regulate cell differentiation. Cell Cycle 2008; 7: 3083–3090.

    Article  CAS  PubMed  Google Scholar 

  20. Torrisani J, Bournet B, Chalret du Rieu M, Bouisson M, Souque A, Escourrou J et al. Let-7 microRNA transfer in pancreatic cancer-derived cells inhibits in vitro cell proliferation but fails to alter tumor progression. Hum Gene Ther 2009; 20: 831–844.

    Article  CAS  PubMed  Google Scholar 

  21. Esquela-Kerscher A, Trang P, Wiggins JF, Patrawala L, Cheng A, Ford L et al. The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle 2008; 7: 759–764.

    Article  CAS  PubMed  Google Scholar 

  22. Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 2007; 131: 1109–1123.

    Article  CAS  PubMed  Google Scholar 

  23. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004; 64: 3753–3756.

    Article  CAS  PubMed  Google Scholar 

  24. Nicoloso MS, Spizzo R, Shimizu M, Rossi S, Calin GA . MicroRNAs—the micro steering wheel of tumour metastases. Nat Rev Cancer 2009; 9: 293–302.

    Article  CAS  PubMed  Google Scholar 

  25. Brown BD, Naldini L . Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nat Rev Genet 2009; 10: 578–585.

    Article  CAS  PubMed  Google Scholar 

  26. Tsang WP, Kwok TT . The miR-18a* microRNA functions as a potential tumor suppressor by targeting on K-Ras. Carcinogenesis 2009; 30: 953–959.

    Article  CAS  PubMed  Google Scholar 

  27. Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y et al. Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene 2009; 28: 1385–1392.

    Article  CAS  PubMed  Google Scholar 

  28. Weidhaas JB, Babar I, Nallur SM, Trang P, Roush S, Boehm M et al. MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res 2007; 67: 11111–11116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li Y, VandenBoom II TG, Kong D, Wang Z, Ali S, Philip PA et al. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res 2009; 69: 6704–6712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was performed with a grant from Consorzio Interuniversitario per le Biotecnologie and Fanoateneo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Graziano.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graziano, F., Canestrari, E., Loupakis, F. et al. Genetic modulation of the Let-7 microRNA binding to KRAS 3′-untranslated region and survival of metastatic colorectal cancer patients treated with salvage cetuximab–irinotecan. Pharmacogenomics J 10, 458–464 (2010). https://doi.org/10.1038/tpj.2010.9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2010.9

Keywords

This article is cited by

Search

Quick links