1887

Abstract

A vaccine against human immunodeficiency virus (HIV) is still awaited. Although the correlates of protection remain elusive, it is likely that CD8 T cells play an important role in the control of this infection. To firmly establish the importance of these cells in protective immunity, a means of efficient elicitation of CD8 T cell responses in the absence of antibody is needed and, when available, might represent a crucial step towards a protective vaccine. Here, a novel vaccine candidate was constructed as a multi-cytotoxic T lymphocyte (CTL) epitope gene delivered and expressed using modified vaccinia virus Ankara (MVA). The immunogen consists of 20 human, one murine and three rhesus macaque epitopes. The non-human epitopes were included so that the vaccine can be tested for immunogenicity and optimal vaccination doses, routes and regimes in experimental animals. Mice were immunized intravenously (i.v.) or intramuscularly (i.m.) using a single dose of 10 p.f.u. of the recombinant MVA and the induction of CTL was assessed. It was demonstrated that both administration routes induced specific CTL responses and that the i.v. route was moderately more immunogenic than the i.m. route. The frequencies of splenocytes producing interferon- upon MHC class I-restricted peptide stimulation were determined using an ELISPOT assay. Also, the correct processing and presentation of some HLA-restricted epitopes in human cells was confirmed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-79-1-83
1998-01-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/79/1/9460927.html?itemId=/content/journal/jgv/10.1099/0022-1317-79-1-83&mimeType=html&fmt=ahah

References

  1. Altenburger W., Suter C. P., Altenburger J. 1989; Partial deletion of the human host range gene in the attenuated vaccinia virus MVA. Archives of Virology 105:15–27
    [Google Scholar]
  2. Carmichael A., Jin X., Sissons P., Borysiewicz L. 1993; Quantitative analysis of the human immunodeficiency virus type 1 (HIV-1)-specific cytotoxic T lymphocyte (CTL) response at different stages of HIV-1 infection: differential CTL responses to HIV-1 and Epstein-Barr virus in late disease. Journal of Experimental Medicine 177:249–256
    [Google Scholar]
  3. Carroll M. W., Moss B. 1995; E. coli beta-glucuronidase (GUS) as a marker for recombinant vaccinia viruses. Biotechniques 19:352–356
    [Google Scholar]
  4. Carroll M. W., Overwijk W. W., Chamberlain R. S., Rosenberg S. A., Moss B., Restifo N. P. 1997; Highly attenuated modified vaccinia virus Ankara (MVA) as an effective recombinant vector: a murine model. Vaccine 15:387–394
    [Google Scholar]
  5. Chakrabarti S., Brechling K., Moss B. 1985; Vaccinia virus expression vector: co-expression of beta-galactosidase provides visual screening of recombinant virus plaques. Molecular and Cellular Biology 5:3403–3409
    [Google Scholar]
  6. Gilbert S. G., Plebanski M., Harris S. J., Allsopp C. E. M., Thomas R., Layton G. T., Hill A. V. S. 1997; A protein particle vaccine containing multiple malaria epitope. Nature Biotechnology in press
    [Google Scholar]
  7. Hanke T., Szawlowski P., Randall R. E. 1992; Construction of solid matrix-antibody-antigen complexes containing simian immunodeficiency virus p27 using tag-specific monoclonal antibody and tag-linked antigen. Journal of General Virology 73:653–660
    [Google Scholar]
  8. Hanke T., Schneider J., Gilbert S. G., Hill A. V. S., McMichael A. 1997a; DNA multi-CTL epitope vaccines for HIV and Plasmodium falciparum: Immunogenicity in mice. Vaccine in press
    [Google Scholar]
  9. Hanke T., Blanchard T. J., Schneider J., Hannan C. M., Becker M., Gilbert S. G., Hill A. V. S., Smith G. L., McMichael A. 1997b; Enhancement of MHC class I-restricted peptide-specific T cell induction by a DNA prime/MVA boost vaccination regime. Vaccine in press
    [Google Scholar]
  10. Hill A. V., Allsopp C. E., Kwiatkowski D., Anstey N. M., Twumasi P., Rowe P. A., Bennett S., Brewster D., McMichael A. J., Greenwood B. M. 1991; Common west African HLA antigens are associated with protection from severe malaria. Nature 352:595–600
    [Google Scholar]
  11. Kalams S. A., Johnson R. P., Trocha A. K., Dynan M. J., Ngo H. S., D’Aquila R. T., Kurnick J. T., Walker B. D. 1994; Longitudinal analysis of TCR gene usage by HIV-1 envelope-specific CTL clones reveals a limited TCR repertoire. Journal of Experimental Medicine 179:1261–1271
    [Google Scholar]
  12. Lalvani A., Aidoo M., Allsopp C. E., Plebanski M., Whittle H. C., Hill A. V. 1994; An HLA-based approach to the design of a CTL-inducing vaccine against Plasmodium falciparum . Research in Immunology 145:461–468
    [Google Scholar]
  13. Mackett M., Smith G. L., Moss B. 1984; General method for production and selection of infectious vaccinia virus recombinants expressing foreign genes. Journal of Virology 49:857–864
    [Google Scholar]
  14. McMichael A. 1992; Cytotoxic T lymphocytes and immune surveillance. Cancer Survey 13:5–21
    [Google Scholar]
  15. Mayr A., Hochstein-Mintzel V., Stickl H. 1975; Abstammung, Eigenschaften und Verwendung des attenuierten Vaccinia-Stammes MVA. Infection 105:6–14
    [Google Scholar]
  16. Mayr A., Stickl H., Muller H. K., Danner K., Singer H. 1978; Der Pockenimpfstamm MVA: Marker, genetische Struktur, Erfahrungen mit der parenteralen Schutzimpfung und Verhalten im abwehrgeschwachten Organismus. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Erste Abteilung Originale, Reihe B 167:375–390
    [Google Scholar]
  17. Meyer H., Sutter G., Mayr A. 1991; Mapping of deletions in the genome of the highly attenuated vaccinia virus MVA and their influence on virulence. Journal of General Virology 72:1031–1038
    [Google Scholar]
  18. Miyahira Y., Murata K., Rodriguez D., Esteban M., Rodrigues M. M., Zavala F. 1995; Quantification of antigen specific CD8+ T cells using an ELISPOT assay. Journal of Immunological Methods 181:45–54
    [Google Scholar]
  19. Oldstone M. B., Tishon A., Eddleston M., McKee T., Whitton J. L. 1993; Vaccination to prevent persistent viral infection. Journal of Virology 67:4372–4378
    [Google Scholar]
  20. Plata F., Autran B., Martins L. P., Wain-Hobson S., Raphael M., Mayaud C., Denis M., Guillon J. M., Debre P. 1987; AIDS virus-specific cytotoxic T lymphocytes in lung disorders. Nature 328:348–351
    [Google Scholar]
  21. Rabinovich N. R., Mclnnes P., Klein D. L., Hall B. F. 1994; Vaccine technologies -views to the future. Science 265:1401–1404
    [Google Scholar]
  22. Ria F., Chan B. M., Scherer M. T., Smith J. A., Gefter M. L. 1990; Immunological activity of covalently linked T-cell epitopes. Nature 343:381–383
    [Google Scholar]
  23. Romero P., Maryanski J. L., Corradin G., Nussenzweig R. S., Nussenzweig V., Zavala F. 1989; Cloned cytotoxic T cells recognize an epitope in the circumsporozoite protein and protect against malaria. Nature 341:323–326
    [Google Scholar]
  24. Rowland-Jones S. L., Nixon D. F., Aldhous M. C., Gotch F., Ariyoshi K., Hallam N., Kroll J. S., Froebel K., McMichael A. 1993; HIV-specific cytotoxic T-cell activity in an HIV-exposed but uninfected infant. Lancet 341:860–861
    [Google Scholar]
  25. Rowland-Jones S., Sutton J., Ariyoshi K., Dong T., Gotch F., McAdam S., Whitby D., Sabally S., Gallimore A., Corrah T., Takiguchi M., Schultz T., McMichael A., Whittle H. 1995; HIV-specific cytotoxic T-cells in HIV-exposed but uninfected Gambian women. Nature Medicine 1:59–64
    [Google Scholar]
  26. Sad S., Kagi D., Mosmann T. R. 1996; Perforin and Fas killing by CD8 + T cells limits their cytokine synthesis and proliferation. Journal of Experimental Medicine 184:1543–1547
    [Google Scholar]
  27. Sidney J., Grey H. M., Kubo R. T., Sette A. 1996; Practical, biochemical and evolutionary implications of the discovery of HLA class I supermotifs. Immunology Today 17:261–266
    [Google Scholar]
  28. Sutter G., Moss B. 1992; Nonreplicating vaccinia vector efficiently expresses recombinant genes. Proceedings of the National Academy of Sciences, USA 89:10847–10851
    [Google Scholar]
  29. Sutter G., Wyatt L. S., Foley P. L., Bennink J. R., Moss B. 1994; A recombinant vector derived from the host range-restricted and highly attenuated MVA strain of vaccinia virus stimulates protective immunity in mice to influenza virus. Vaccine 12:1032–1040
    [Google Scholar]
  30. Takahashi H., Nakagawa Y., Yokomuro K., Berzofsky J. A. 1993; Induction of CD8+ cytotoxic T lymphocytes by immunization with syngeneic irradiated HIV-1 envelope derived peptide-pulsed dendritic cells. International Immunology 5:849–857
    [Google Scholar]
  31. Thomson S. A., Khanna R., Gardner J., Burrows S. R., Coupar B., Moss D. J., Suhrbier A. 1995; Minimal epitopes expressed in a recombinant polyepitope protein are processed and presented to CD8 + cytotoxic T cells : implications for vaccine design. Proceedings of the National Academy of Sciences, USA 92:5845–5849
    [Google Scholar]
  32. Thomson S. A., Elliott S. L., Sherritt M. A., Sproat K. W., Coupar B. E. H., Scalzo A. A., Forbes C. A., Ladhams A. M., Mo X. Y., Tripp R. A., Doherty P. C., Moss D. J., Suhribier A. 1996; Recombinant polyepitope vaccines for the delivery of multiple CD8 cytotoxic T cell epitopes. Journal of Immunology 157:822–826
    [Google Scholar]
  33. Townsend A., Bastin J., Gould K., Brownlee G., Andrew M., Coupar B., Boyle D., Chan S., Smith G. 1988; Defective presentation to class I-restricted cytotoxic T lymphocytes in vaccinia-infected cells is overcome by enhanced degradation of antigen. Journal of Experimental Medicine 168:1211–1224
    [Google Scholar]
  34. Valitutti S., Muller S., Dessing M., Lanzavecchia A. 1996; Different responses are elicited in cytotoxic T lymphocytes by different levels of T cell receptor occupancy. Journal of Experimental Medicine 183:1917–1921
    [Google Scholar]
  35. Walker B. D., Chakrabarti S., Moss B., Paradis T. J., Flynn T., Durno A. G., Blumberg R. S., Kaplan J. C., Hirsch M. S., Schooley R. T. 1987; HIV-specific cytotoxic T lymphocytes in seropositive indivi-duals. Nature 328:345–348
    [Google Scholar]
  36. Weis J. H., Murre C. 1985; Differential expression of H-2Dd and H-2Ld histocompatibility antigens. Journal of Experimental Medicine 161:356–365
    [Google Scholar]
  37. Whitton J. L., Sheng N., Oldstone M. B., McKee T. A. 1993; A ‘string-of-beads’ vaccine, comprising linked minigenes, confers protection from lethal-dose virus challenge. Journal of Virology 67:348–352
    [Google Scholar]
  38. Yasutomi Y., McAdam S. N., Boyson J. E., Watkins D. I., Letvin N. L. 1995; An MHC class I B locus allele-restricted simian immunodeficiency virus envelope CTL epitope on rhesus monkeys. Journal of Immunology 154:2516–2522
    [Google Scholar]
  39. Zinkernagel R. M., Doherty P. C. 1975; H-2 compatibility requirement for T cell-mediated lysis of target cells infected with lymphocytic choriomeningitis virus. Journal of Experimental Medicine 141:1427–1436
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-79-1-83
Loading
/content/journal/jgv/10.1099/0022-1317-79-1-83
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error