1887

Abstract

The vaccinia virus (VV) N1L gene encodes a protein of 14 kDa that was identified previously in the concentrated supernatant of virus-infected cells. Here we show that the protein is present predominantly (>90%) within cells rather than in the culture supernatant and it exists as a non-glycosylated, non-covalent homodimer. The N1L protein present in the culture supernatant was uncleaved at the N terminus and was released from cells more slowly than the VV A41L gene product, a secreted glycoprotein that has a conventional signal peptide. Bioinformatic analyses predict that the N1L protein is largely alpha-helical and show that it is conserved in many VV strains, in other orthopoxviruses and in members of other chordopoxvirus genera. However, database searches found no non-poxvirus proteins with significant amino acid similarity to N1L. A deletion mutant lacking the N1L gene replicated normally in cell culture, but was attenuated in intranasal and intradermal murine models compared to wild-type and revertant controls. The conservation of the N1L protein and the attenuated phenotype of the deletion mutant indicate an important role in the virus life-cycle.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-8-1965
2002-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/8/0831965a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-8-1965&mimeType=html&fmt=ahah

References

  1. Alcamí A., Koszinowski U. H. 2000; Viral mechanisms of immune evasion. Trends in Microbiology 8:410–418
    [Google Scholar]
  2. Alcamí A., Smith G. L. 1992; A soluble receptor for interleukin-1 beta encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. Cell 71:153–167
    [Google Scholar]
  3. Alcamí A., Smith G. L. 1995; Vaccinia, cowpox, and camelpox viruses encode soluble gamma interferon receptors with novel broad species specificity. Journal of Virology 69:4633–4639
    [Google Scholar]
  4. Alcamí A., Symons J. A., Collins P. D., Williams T. J., Smith G. L. 1998; Blockade of chemokine activity by a soluble chemokine binding protein from vaccinia virus. Journal of Immunology 160:624–633
    [Google Scholar]
  5. Antoine G., Scheiflinger F., Dorner F., Falkner F. G. 1998; The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses. Virology 244:365–396
    [Google Scholar]
  6. Boyle D. B., Coupar B. E. H. 1988; A dominant selectable marker for the construction of recombinant poxviruses. Gene 65:123–128
    [Google Scholar]
  7. Buller R. M., Smith G. L., Cremer K., Notkins A. L., Moss B. 1985; Decreased virulence of recombinant vaccinia virus expression vectors is associated with a thymidine kinase-negative phenotype. Nature 317:813–815
    [Google Scholar]
  8. Cameron C., Hota-Mitchell S., Chen L., Barrett J., Cao J. X., Macaulay C., Willer D., Evans D., McFadden G. 1999; The complete DNA sequence of myxoma virus. Virology 264:298–318
    [Google Scholar]
  9. Chang P. Y., Lai A. C., Pogo B. G. 1992; Attenuated deletion mutant of vaccinia virus IHD-W recovered virulence by reinsertion of a terminal restriction fragment. Microbial Pathogenesis 13:49–59
    [Google Scholar]
  10. Falkner F. G., Moss B. 1990; Transient dominant selection of recombinant vaccinia viruses. Journal of Virology 64:3108–3111
    [Google Scholar]
  11. Gardner J. D., Tscharke D. C., Reading P. C., Smith G. L. 2001; Vaccinia virus semaphorin A39R is a 50–55 kDa secreted glycoprotein that affects the outcome of infection in a murine intradermal model. Journal of General Virology 82:2083–2093
    [Google Scholar]
  12. Goebel S. J., Johnson G. P., Perkus M. E., Davis S. W., Winslow J. P., Paoletti E. 1990; The complete DNA sequence of vaccinia virus. Virology 179:247–266
    [Google Scholar]
  13. Harlow E., Lane D. 1988 Antibodies: a Laboratory Manual pp 1–726 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  14. Hughes S. J., Johnston L. H., de Carlos A., Smith G. L. 1991; Vaccinia virus encodes an active thymidylate kinase that complements a cdc8 mutant of Saccharomyces cerevisiae . Journal of Biological Chemistry 266:20103–20109
    [Google Scholar]
  15. Kelley L. A., MacCallum R., Sternberg M. J. E. 1999; Recognition of remote routeing homologies using three-dimensional information to generate a position specific scoring matrix in the program 3D-PSSM. In Third Annual Conference on Computational Molecular Biology pp 218–225 Edited by Istrail S., Pevzner P., Waterman W. New York: The Association for Computational Machinery;
    [Google Scholar]
  16. Kelley L. A., MacCallum R. M., Sternberg M. J. 2000; Enhanced genome annotation using structural profiles in the program 3D-PSSM. Journal of Molecular Biology 299:499–520
    [Google Scholar]
  17. Kotwal G. J., Moss B. 1988; Analysis of a large cluster of nonessential genes deleted from a vaccinia virus terminal transposition mutant. Virology 167:524–537
    [Google Scholar]
  18. Kotwal G. J., Hugin A. W., Moss B. 1989; Mapping and insertional mutagenesis of a vaccinia virus gene encoding a 13,800-Da secreted protein. Virology 171:579–587
    [Google Scholar]
  19. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157:105–132
    [Google Scholar]
  20. Mackett M., Smith G. L., Moss B. 1985; The construction and characterization of vaccinia virus recombinants expressing foreign genes. In DNA Cloning: a Practical Approach pp 191–211 Edited by Glover D. M. Oxford: IRL Press;
    [Google Scholar]
  21. Massung R. F., Liu L. I., Qi J., Knight J. C., Yuran T. E., Kerlavage A. R., Parsons J. M., Venter J. C., Esposito J. J. 1994; Analysis of the complete genome of smallpox variola major virus strain Bangladesh-1975. Virology 201:215–240
    [Google Scholar]
  22. Moss B. 2001; Poxviridae : the viruses and their replication. In Virology pp 2849–2883 Edited by Knipe D. M., Howley P. M. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  23. Moss B., Shisler J. L. 2001; Immunology 101 at poxvirus U: immune evasion genes. Seminars in Immunology 13:59–66
    [Google Scholar]
  24. Moss B., Winters E., Cooper J. A. 1981; Deletion of a 9,000-base-pair segment of the vaccinia virus genome that encodes nonessential polypeptides. Journal of Virology 40:387–395
    [Google Scholar]
  25. Ng A., Tscharke D. C., Reading P. C., Smith G. L. 2001; The vaccinia virus A41L protein is a soluble 30 kDa glycoprotein that affects virus virulence. Journal of General Virology 82:2095–2105
    [Google Scholar]
  26. Nicholas K. B., Nicholas H. B. 1997; GeneDoc: a tool for editing and annotating multiple sequence alignments, 2.5.000. Distributed by the author
  27. Panicali D., Davis S. W., Mercer S. R., Paoletti E. 1981; Two major variants present in serially propagated stocks of the WR strain of vaccinia virus. Journal of Virology 37:1000–1010
    [Google Scholar]
  28. Parkinson J. E., Smith G. L. 1994; Vaccinia virus gene A36R encodes a Mr 43–50 K protein on the surface of extracellular enveloped virus. Virology 204:376–390
    [Google Scholar]
  29. Perkus M. E., Goebel S. J., Davis S. W., Johnson G. P., Norton E. K., Paoletti E. 1991; Deletion of 55 open reading frames from the termini of vaccinia virus. Virology 180:406–410
    [Google Scholar]
  30. Sanderson C. M., Parkinson J. E., Hollinshead M., Smith G. L. 1996; Overexpression of the vaccinia virus A38L integral membrane protein promotes Ca2+ influx into infected cells. Journal of Virology 70:905–914
    [Google Scholar]
  31. Schmelz M., Sodeik B., Ericsson M., Wolffe E., Shida H., Hiller G., Griffiths G. 1994; Assembly of vaccinia virus: the second wrapping cisterna is derived from the trans Golgi network. Journal of Virology 68:130–147
    [Google Scholar]
  32. Shchelkunov S. N., Safronov P. F., Totmenin A. V., Petrov N. A., Ryazankina O. I., Gutorov V. V., Kotwal G. J. 1998; The genomic sequence analysis of the left and right species-specific terminal region of a cowpox virus strain reveals unique sequences and a cluster of intact ORFs for immunomodulatory and host range proteins. Virology 243:432–460
    [Google Scholar]
  33. Smith G. L., Symons J. A., Khanna A., Vanderplasschen A., Alcamí A. 1997; Vaccinia virus immune evasion. Immunological Reviews 159:137–154
    [Google Scholar]
  34. Symons J. A., Alcami A., Smith G. L. 1995; Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity. Cell 81:551–560
    [Google Scholar]
  35. Thompson J. D., Higgins D. G., Gibson T. J. 1994; CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22:4673–4680
    [Google Scholar]
  36. Tscharke D. C., Smith G. L. 1999; A model for vaccinia virus pathogenesis and immunity based on intradermal injection of mouse ear pinnae. Journal of General Virology 80:2751–2755
    [Google Scholar]
  37. Tscharke D. C., Reading P. C., Smith G. L. 2002; Dermal infection with vaccinia virus reveals roles for virus proteins not seen using other inoculation routes. Journal of General Virology 83:1977–1986
    [Google Scholar]
  38. Tulman E. R., Afonso C. L., Lu Z., Zsak L., Kutish G. F., Rock D. L. 2001; Genome of lumpy skin disease virus. Journal of Virology 75:7122–7130
    [Google Scholar]
  39. Willer D. O., McFadden G., Evans D. H. 1999; The complete genome sequence of Shope (rabbit) fibroma virus. Virology 264:319–343
    [Google Scholar]
  40. Wittek R., Muller K., Menna A., Wyler R. 1978; Length heterogeneity in the DNA of vaccinia virus is eliminated by cloning the virus. FEBS Letters 90:41–46
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-8-1965
Loading
/content/journal/jgv/10.1099/0022-1317-83-8-1965
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error