1932

Abstract

The dendritic cells (DCs) of the immune system function in innate and adaptive responses by directing activity of various effector cells rather than serving as effectors themselves. DCs and closely related myeloid lineages share expression of many surface receptors, presenting a challenge in distinguishing their unique in vivo functions. Recent work has taken advantage of unique transcriptional programs to identify and manipulate murine DCs in vivo. This work has assigned several nonredundant in vivo functions to distinct DC lineages, consisting of plasmacytoid DCs and several subsets of classical DCs that promote different immune effector modules in response to pathogens. In parallel, a correspondence between human and murine DC subsets has emerged, underlying structural similarities for the DC lineages between these species. Recent work has begun to unravel the transcriptional circuitry that controls the development and diversification of DCs from common progenitors in the bone marrow.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-032713-120204
2016-05-20
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/immunol/34/1/annurev-immunol-032713-120204.html?itemId=/content/journals/10.1146/annurev-immunol-032713-120204&mimeType=html&fmt=ahah

Literature Cited

  1. Merad M, Sathe P, Helft J, Miller J, Mortha A. 1.  2013. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 31:563–604 [Google Scholar]
  2. Satpathy AT, Wu X, Albring JC, Murphy KM. 2.  2012. Re(de)fining the dendritic cell lineage. Nat. Immunol. 13:1145–54 [Google Scholar]
  3. Mildner A, Jung S. 3.  2014. Development and function of dendritic cell subsets. Immunity 40:642–56 [Google Scholar]
  4. Steinman RM, Witmer MD. 4.  1978. Lymphoid dendritic cells are potent stimulators of the primary mixed leukocyte reaction in mice. PNAS 75:5132–36 [Google Scholar]
  5. Reizis B, Bunin A, Ghosh HS, Lewis KL, Sisirak V. 5.  2011. Plasmacytoid dendritic cells: recent progress and open questions. Annu. Rev. Immunol. 29:163–83 [Google Scholar]
  6. Dalod M, Chelbi R, Malissen B, Lawrence T. 6.  2014. Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming. EMBO J. 33:1104–16 [Google Scholar]
  7. Edelson BT, KC W, Juang R, Kohyama M, Benoit LA. 7.  et al. 2010. Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8α+ conventional dendritic cells. J. Exp. Med. 207:823–36 [Google Scholar]
  8. Schlitzer A, McGovern N, Teo P, Zelante T, Atarashi K. 8.  et al. 2013. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 38:970–83 [Google Scholar]
  9. Hambleton S, Salem S, Bustamante J, Bigley V, Boisson-Dupuis S. 9.  et al. 2011. IRF8 mutations and human dendritic-cell immunodeficiency. N. Engl. J. Med. 365:127–38 [Google Scholar]
  10. Tailor P, Tamura T, Morse HC, Ozato K. 10.  2008. The BXH2 mutation in IRF8 differentially impairs dendritic cell subset development in the mouse. Blood 111:1942–45 [Google Scholar]
  11. Hildner K, Edelson BT, Purtha WE, Diamond M, Matsushita H. 11.  et al. 2008. Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. Science 322:1097–100 [Google Scholar]
  12. Ginhoux F, Liu K, Helft J, Bogunovic M, Greter M. 12.  et al. 2009. The origin and development of nonlymphoid tissue CD103+ DCs. J. Exp. Med. 206:3115–30 [Google Scholar]
  13. Kashiwada M, Pham NL, Pewe LL, Harty JT, Rothman PB. 13.  2011. NFIL3/E4BP4 is a key transcription factor for CD8α+ dendritic cell development. Blood 117:6193–97 [Google Scholar]
  14. Hacker C, Kirsch RD, Ju XS, Hieronymus T, Gust TC. 14.  et al. 2003. Transcriptional profiling identifies Id2 function in dendritic cell development. Nat. Immunol. 4:380–86 [Google Scholar]
  15. Spits H, Couwenberg F, Bakker AQ, Weijer K, Uittenbogaart CH. 15.  2000. Id2 and Id3 inhibit development of CD34+ stem cells into predendritic cell (pre-DC)2 but not into pre-DC1. Evidence for a lymphoid origin of pre-DC2. J. Exp. Med. 192:1775–84 [Google Scholar]
  16. Watchmaker PB, Lahl K, Lee M, Baumjohann D, Morton J. 16.  et al. 2014. Comparative transcriptional and functional profiling defines conserved programs of intestinal DC differentiation in humans and mice. Nat. Immunol. 15:98–108 [Google Scholar]
  17. Kamphorst AO, Guermonprez P, Dudziak D, Nussenzweig MC. 17.  2010. Route of antigen uptake differentially impacts presentation by dendritic cells and activated monocytes. J. Immunol. 185:3426–35 [Google Scholar]
  18. Vander LB, Khan AA, Hackney JA, Agrawal S, Lesch J. 18.  et al. 2014. Transcriptional programming of dendritic cells for enhanced MHC class II antigen presentation. Nat. Immunol. 15:161–67 [Google Scholar]
  19. Satpathy AT, Briseno CG, Lee JS, Ng D, Manieri NA. 19.  et al. 2013. Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nat. Immunol. 14:937–48 [Google Scholar]
  20. Tussiwand R, Everts B, Grajales-Reyes GE, Kretzer NM, Iwata A. 20.  et al. 2015. Klf4 expression in conventional dendritic cells is required for T helper 2 cell responses. Immunity 42:916–28 [Google Scholar]
  21. Lewis KL, Caton ML, Bogunovic M, Greter M, Grajkowska LT. 21.  et al. 2011. Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity 35:780–91 [Google Scholar]
  22. Gurka S, Hartung E, Becker M, Kroczek RA. 22.  2015. Mouse conventional dendritic cells can be universally classified based on the mutually exclusive expression of XCR1 and SIRPα. Front. Immunol. 6:35 [Google Scholar]
  23. Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N. 23.  et al. 2014. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat. Rev. Immunol. 14:571–78 [Google Scholar]
  24. Reizis B, Colonna M, Trinchieri G, Barrat F, Gilliet M. 24.  2011. Plasmacytoid dendritic cells: one-trick ponies or workhorses of the immune system?. Nat. Rev. Immunol. 11:558–65 [Google Scholar]
  25. Pinto AK, Daffis S, Brien JD, Gainey MD, Yokoyama WM. 25.  et al. 2011. A temporal role of type I interferon signaling in CD8+ T cell maturation during acute West Nile virus infection. PLOS Pathog. 7e1002407
  26. Zelenay S, Keller AM, Whitney PG, Schraml BU, Deddouche S. 26.  et al. 2012. The dendritic cell receptor DNGR-1 controls endocytic handling of necrotic cell antigens to favor cross-priming of CTLs in virus-infected mice. J. Clin. Investig. 122:1615–27 [Google Scholar]
  27. Torti N, Walton SM, Murphy KM, Oxenius A. 27.  2011. Batf3 transcription factor-dependent DC subsets in murine CMV infection: differential impact on T-cell priming and memory inflation. Eur. J. Immunol. 41:2612–18 [Google Scholar]
  28. Mashayekhi M, Sandau MM, Dunay IR, Frickel EM, Khan A. 28.  et al. 2011. CD8a+ dendritic cells are the critical source of interleukin-12 that controls acute infection by Toxoplasma gondii tachyzoites. Immunity 35:249–59 [Google Scholar]
  29. Scharton-Kersten T, Contursi C, Masumi A, Sher A, Ozato K. 29.  1997. Interferon consensus sequence binding protein-deficient mice display impaired resistance to intracellular infection due to a primary defect in interleukin 12 p40 induction. J. Exp. Med. 186:1523–34 [Google Scholar]
  30. Aliberti J, Schulz O, Pennington DJ, Tsujimura H, Reis e Sousa C. 30.  et al. 2003. Essential role for ICSBP in the in vivo development of murine CD8α+ dendritic cells. Blood 101:305–10 [Google Scholar]
  31. Tsujimura H, Tamura T, Gongora C, Aliberti J, Reis e Sousa C. 31.  et al. 2003. ICSBP/IRF-8 retrovirus transduction rescues dendritic cell development in vitro. Blood 101:961–69 [Google Scholar]
  32. Yarovinsky F, Zhang D, Andersen JF, Bannenberg GL, Serhan CN. 32.  et al. 2005. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308:1626–29 [Google Scholar]
  33. Koblansky AA, Jankovic D, Oh H, Hieny S, Sungnak W. 33.  et al. 2013. Recognition of profilin by Toll-like receptor 12 is critical for host resistance to Toxoplasma gondii. Immunity 38:119–30 [Google Scholar]
  34. Wu CY, Maeda H, Contursi C, Ozato K, Seder RA. 34.  1999. Differential requirement of IFN consensus sequence binding protein for the production of IL-12 and induction of Th1-type cells in response to IFN-gamma. J. Immunol. 162:807–12 [Google Scholar]
  35. Goldszmid RS, Caspar P, Rivollier A, White S, Dzutsev A. 35.  et al. 2012. NK cell-derived interferon-gamma orchestrates cellular dynamics and the differentiation of monocytes into dendritic cells at the site of infection. Immunity 36:1047–59 [Google Scholar]
  36. Fuertes MB, Kacha AK, Kline J, Woo SR, Kranz DM. 36.  et al. 2011. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8α+ dendritic cells. J. Exp. Med. 208:2005–16 [Google Scholar]
  37. Diamond MS, Kinder M, Matsushita H, Mashayekhi M, Dunn GP. 37.  et al. 2011. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J. Exp. Med. 208:1989–2003 [Google Scholar]
  38. Sathe P, Pooley J, Vremec D, Mintern J, Jin JO. 38.  et al. 2011. The acquisition of antigen cross-presentation function by newly formed dendritic cells. J. Immunol. 186:5184–92 [Google Scholar]
  39. de Brito C, Tomkowiak M, Ghittoni R, Caux C, Leverrier Y, Marvel J. 39.  2011. CpG promotes cross-presentation of dead cell-associated antigens by pre-CD8α+ dendritic dells. J. Immunol. 186:1503–11 [Google Scholar]
  40. Zhan Y, Carrington EM, van Nieuwenhuijze A, Bedoui S, Seah S. 40.  et al. 2011. GM-CSF increases cross presentation and CD103 expression by mouse CD8+ spleen dendritic cells. Eur. J. Immunol. 41:2585–95 [Google Scholar]
  41. Desch AN, Randolph GJ, Murphy K, Gautier EL, Kedl RM. 41.  et al. 2011. CD103+ pulmonary dendritic cells preferentially acquire and present apoptotic cell-associated antigen. J. Exp. Med. 208:1789–97 [Google Scholar]
  42. Ferris ST, Carrero JA, Mohan JF, Calderon B, Murphy KM, Unanue ER. 42.  2014. A minor subset of Batf3-dependent antigen-presenting cells in islets of Langerhans is essential for the development of autoimmune diabetes. Immunity 41:657–69 [Google Scholar]
  43. Broz ML, Binnewies M, Boldajipour B, Nelson AE, Pollack JL. 43.  et al. 2014. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 26:638–52 [Google Scholar]
  44. Fossum E, Grodeland G, Terhorst D, Tveita AA, Vikse E. 44.  et al. 2015. Vaccine molecules targeting Xcr1 on cross-presenting DCs induce protective CD8+ T-cell responses against influenza virus. Eur. J. Immunol. 45:624–35 [Google Scholar]
  45. Hartung E, Becker M, Bachem A, Reeg N, Jakel A. 45.  et al. 2015. Induction of potent CD8 T cell cytotoxicity by specific targeting of antigen to cross-presenting dendritic cells in vivo via murine or human XCR1. J. Immunol. 194:1069–79 [Google Scholar]
  46. Neubert K, Lehmann CH, Heger L, Baranska A, Staedtler AM. 46.  et al. 2014. Antigen delivery to CD11c+CD8 dendritic cells induces protective immune responses against experimental melanoma in mice in vivo. J. Immunol. 192:5830–38 [Google Scholar]
  47. Zheng Y, Valdez PA, Danilenko DM, Hu Y, Sa SM. 47.  et al. 2008. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 14:282–89 [Google Scholar]
  48. Kinnebrew MA, Buffie CG, Diehl GE, Zenewicz LA, Leiner I. 48.  et al. 2012. Interleukin 23 production by intestinal CD103+CD11b+ dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity 36:276–87 [Google Scholar]
  49. Caton ML, Smith-Raska MR, Reizis B. 49.  2007. Notch-RBP-J signaling controls the homeostasis of CD8 dendritic cells in the spleen. J. Exp. Med. 204:1653–64 [Google Scholar]
  50. Ishifune C, Maruyama S, Sasaki Y, Yagita H, Hozumi K. 50.  et al. 2014. Differentiation of CD11c+ CX3CR1+ cells in the small intestine requires Notch signaling. PNAS 111:5986–91 [Google Scholar]
  51. Schreiber HA, Loschko J, Karssemeijer RA, Escolano A, Meredith MM. 51.  et al. 2013. Intestinal monocytes and macrophages are required for T cell polarization in response to Citrobacter rodentium. J. Exp. Med. 210:2025–39 [Google Scholar]
  52. Bajana S, Roach K, Turner S, Paul J, Kovats S. 52.  2012. IRF4 promotes cutaneous dendritic cell migration to lymph nodes during homeostasis and inflammation. J. Immunol. 189:3368–77 [Google Scholar]
  53. Ota N, Wong K, Valdez PA, Zheng Y, Crellin NK. 53.  et al. 2011. IL-22 bridges the lymphotoxin pathway with the maintenance of colonic lymphoid structures during infection with Citrobacter rodentium. Nat. Immunol. 12:941–48 [Google Scholar]
  54. Zheng Y, Danilenko DM, Valdez P, Kasman I, Eastham-Anderson J. 54.  et al. 2007. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445:648–51 [Google Scholar]
  55. Denning TL, Wang YC, Patel SR, Williams IR, Pulendran B. 55.  2007. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat. Immunol. 8:1086–94 [Google Scholar]
  56. Naik S, Bouladoux N, Linehan JL, Han SJ, Harrison OJ. 56.  et al. 2015. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature 520:104–8 [Google Scholar]
  57. Phythian-Adams AT, Cook PC, Lundie RJ, Jones LH, Smith KA. 57.  et al. 2010. CD11c depletion severely disrupts Th2 induction and development in vivo. J. Exp. Med. 207:2089–96 [Google Scholar]
  58. Hammad H, Plantinga M, Deswarte K, Pouliot P, Willart MA. 58.  et al. 2010. Inflammatory dendritic cells—not basophils—are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen. J. Exp. Med. 207:2097–111 [Google Scholar]
  59. Mesnil C, Sabatel CM, Marichal T, Toussaint M, Cataldo D. 59.  et al. 2012. Resident CD11b+Ly6C lung dendritic cells are responsible for allergic airway sensitization to house dust mite in mice. PLOS ONE 7:e53242 [Google Scholar]
  60. Plantinga M, Guilliams M, Vanheerswynghels M, Deswarte K, Branco-Madeira F. 60.  et al. 2013. Conventional and monocyte-derived CD11b+ dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity 38:322–35 [Google Scholar]
  61. Yu CI, Becker C, Metang P, Marches F, Wang Y. 61.  et al. 2014. Human CD141+ dendritic cells induce CD4+ T cells to produce type 2 cytokines. J. Immunol. 193:4335–43 [Google Scholar]
  62. Williams JW, Tjota MY, Clay BS, Vander LB, Bandukwala HS. 62.  et al. 2013. Transcription factor IRF4 drives dendritic cells to promote Th2 differentiation. Nat. Commun. 4:2990 [Google Scholar]
  63. Kumamoto Y, Linehan M, Weinstein JS, Laidlaw BJ, Craft JE, Iwasaki A. 63.  2013. CD301b+ dermal dendritic cells drive T helper 2 cell-mediated immunity. Immunity 39:733–43 [Google Scholar]
  64. Gao Y, Nish SA, Jiang R, Hou L, Licona-Limon P. 64.  et al. 2013. Control of T helper 2 responses by transcription factor IRF4-dependent dendritic cells. Immunity 39:722–32 [Google Scholar]
  65. Park CS, Lee PH, Yamada T, Burns A, Shen Y. 65.  et al. 2012. Kruppel-like factor 4 (KLF4) promotes the survival of natural killer cells and maintains the number of conventional dendritic cells in the spleen. J. Leukoc. Biol. 91:739–50 [Google Scholar]
  66. Ochiai S, Roediger B, Abtin A, Shklovskaya E, Fazekas de St Groth B. 66.  et al. 2014. CD326loCD103loCD11blo dermal dendritic cells are activated by thymic stromal lymphopoietin during contact sensitization in mice. J. Immunol. 193:2504–11 [Google Scholar]
  67. Swiecki M, Gilfillan S, Vermi W, Wang Y, Colonna M. 67.  2010. Plasmacytoid dendritic cell ablation impacts early interferon responses and antiviral NK and CD8+ T cell accrual. Immunity 33:955–66 [Google Scholar]
  68. Cervantes-Barragan L, Lewis KL, Firner S, Thiel V, Hugues S. 68.  et al. 2012. Plasmacytoid dendritic cells control T-cell response to chronic viral infection. PNAS 109:3012–17 [Google Scholar]
  69. Takagi H, Fukaya T, Eizumi K, Sato Y, Sato K. 69.  et al. 2011. Plasmacytoid dendritic cells are crucial for the initiation of inflammation and T cell immunity in vivo. Immunity 35:958–71 [Google Scholar]
  70. Swiecki M, Wang Y, Riboldi E, Kim AH, Dzutsev A. 70.  et al. 2014. Cell depletion in mice that express diphtheria toxin receptor under the control of SiglecH encompasses more than plasmacytoid dendritic cells. J. Immunol. 192:4409–16 [Google Scholar]
  71. Haniffa M, Collin M, Ginhoux F. 71.  2013. Ontogeny and functional specialization of dendritic cells in human and mouse. Adv. Immunol. 120:1–49 [Google Scholar]
  72. Schlitzer A, Ginhoux F. 72.  2014. Organization of the mouse and human DC network. Curr. Opin. Immunol. 26:90–99 [Google Scholar]
  73. Dutertre CA, Wang LF, Ginhoux F. 73.  2014. Aligning bona fide dendritic cell populations across species. Cell Immunol. 291:3–10 [Google Scholar]
  74. Haniffa M, Shin A, Bigley V, McGovern N, Teo P. 74.  et al. 2012. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity 37:60–73 [Google Scholar]
  75. Kim SJ, Goldstein J, Dorso K, Merad M, Mayer L. 75.  et al. 2014. Expression of Blimp-1 in dendritic cells modulates the innate inflammatory response in dextran sodium sulfate-induced colitis. Mol. Med. 20:707–19 [Google Scholar]
  76. Klechevsky E, Morita R, Liu M, Cao Y, Coquery S. 76.  et al. 2008. Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity 29:497–510 [Google Scholar]
  77. Artyomov MN, Munk A, Gorvel L, Korenfeld D, Cella M. 77.  et al. 2015. Modular expression analysis reveals functional conservation between human Langerhans cells and mouse cross-priming dendritic cells. J. Exp. Med. 212:743–57 [Google Scholar]
  78. Bigley V, McGovern N, Milne P, Dickinson R, Pagan S. 78.  et al. 2015. Langerin-expressing dendritic cells in human tissues are related to CD1c+ dendritic cells and distinct from Langerhans cells and CD141high XCR1+ dendritic cells. J. Leukoc. Biol. 97:627–34 [Google Scholar]
  79. Milne P, Bigley V, Gunawan M, Haniffa M, Collin M. 79.  2015. CD1c+ blood dendritic cells have Langerhans cell potential. Blood 125:470–73 [Google Scholar]
  80. McGovern N, Schlitzer A, Gunawan M, Jardine L, Shin A. 80.  et al. 2014. Human dermal CD14+ cells are a transient population of monocyte-derived macrophages. Immunity 41:465–77 [Google Scholar]
  81. Traver D, Akashi K, Manz M, Merad M, Miyamoto T. 81.  et al. 2000. Development of CD8α-positive dendritic cells from a common myeloid progenitor. Science 290:2152–54 [Google Scholar]
  82. Onai N, Obata-Onai A, Schmid MA, Ohteki T, Jarrossay D, Manz MG. 82.  2007. Identification of clonogenic common Flt3+ M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nature 8:1207–16 [Google Scholar]
  83. Schlenner SM, Madan V, Busch K, Tietz A, Laufle C. 83.  et al. 2010. Fate mapping reveals separate origins of T cells and myeloid lineages in the thymus. Immunity 32:426–36 [Google Scholar]
  84. Naik SH, Perie L, Swart E, Gerlach C, van Rooij N. 84.  et al. 2013. Diverse and heritable lineage imprinting of early haematopoietic progenitors. Nature 496:229–32 [Google Scholar]
  85. Kueh HY, Champhekar A, Nutt SL, Elowitz MB, Rothenberg EV. 85.  2013. Positive feedback between PU.1 and the cell cycle controls myeloid differentiation. Science 341:670–73 [Google Scholar]
  86. Fogg DK, Sibon C, Miled C, Jung S, Aucouturier P. 86.  et al. 2006. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311:83–87 [Google Scholar]
  87. Auffray C, Fogg DK, Narni-Mancinelli E, Senechal B, Trouillet C. 87.  et al. 2009. CX3CR1+ CD115+ CD135+ common macrophage/DC precursors and the role of CX3CR1 in their response to inflammation. J. Exp. Med. 206:595–606 [Google Scholar]
  88. Sathe P, Metcalf D, Vremec D, Naik SH, Langdon WY. 88.  et al. 2014. Lymphoid tissue and plasmacytoid dendritic cells and macrophages do not share a common macrophage-dendritic cell-restricted progenitor. Immunity 41:104–15 [Google Scholar]
  89. Hettinger J, Richards DM, Hansson J, Barra MM, Joschko AC. 89.  et al. 2013. Origin of monocytes and macrophages in a committed progenitor. Nat. Immunol. 14:821–30 [Google Scholar]
  90. Naik SH, Sathe P, Park HY, Metcalf D, Proietto AI. 90.  et al. 2007. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat. Immunol. 8:1217–26 [Google Scholar]
  91. Matthews W, Jordan CT, Gavin M, Jenkins NA, Copeland NG, Lemischka IR. 91.  1991. A receptor tyrosine kinase cDNA isolated from a population of enriched primitive hematopoietic cells and exhibiting close genetic linkage to c-Kit. PNAS 88:9026–30 [Google Scholar]
  92. Mackarehtschian K, Hardin JD, Moore KA, Boast S, Goff SP, Lemischka IR. 92.  1995. Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors. Immunity 3:147–61 [Google Scholar]
  93. Miller JC, Brown BD, Shay T, Gautier EL, Jojic V. 93.  et al. 2012. Deciphering the transcriptional network of the dendritic cell lineage. Nat. Immunol. 13:888–99 [Google Scholar]
  94. Waskow C, Liu K, Darrasse-Jeze G, Guermonprez P, Ginhoux F. 94.  et al. 2008. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat. Immunol. 9:676–83 [Google Scholar]
  95. McKenna HJ, Stocking KL, Miller RE, Brasel K, De Smedt T. 95.  et al. 2000. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95:3489–97 [Google Scholar]
  96. Bogunovic M, Ginhoux F, Helft J, Shang L, Hashimoto D. 96.  et al. 2009. Origin of the lamina propria dendritic cell network. Immunity 31:513–25 [Google Scholar]
  97. Wu L, Nichogiannopoulou A, Shortman K, Georgopoulos K. 97.  1997. Cell-autonomous defects in dendritic cell populations of Ikaros mutant mice point to a developmental relationship with the lymphoid lineage. Immunity 7:483–92 [Google Scholar]
  98. Allman D, Dalod M, Asselin-Paturel C, Delale T, Robbins SH. 98.  et al. 2006. Ikaros is required for plasmacytoid dendritic cell differentiation. Blood 108:4025–34 [Google Scholar]
  99. Guerriero A, Langmuir PB, Spain LM, Scott EW. 99.  2000. PU.1 is required for myeloid-derived but not lymphoid-derived dendritic cells. Blood 95:879–85 [Google Scholar]
  100. Anderson KL, Perkin H, Surh CD, Venturini S, Maki RA, Torbett BE. 100.  2000. Transcription factor PU.1 is necessary for development of thymic and myeloid progenitor-derived dendritic cells. J. Immunol. 164:1855–61 [Google Scholar]
  101. Carotta S, Dakic A, D’Amico A, Pang SH, Greig KT. 101.  et al. 2010. The transcription factor PU.1 controls dendritic cell development and Flt3 cytokine receptor expression in a dose-dependent manner. Immunity 32:628–41 [Google Scholar]
  102. Rathinam C, Geffers R, Yucel R, Buer J, Welte K. 102.  et al. 2005. The transcriptional repressor Gfi1 controls STAT3-dependent dendritic cell development and function. Immunity 22:717–28 [Google Scholar]
  103. Schonheit J, Kuhl C, Gebhardt ML, Klett FF, Riemke P. 103.  et al. 2013. PU.1 level-directed chromatin structure remodeling at the Irf8 gene drives dendritic cell commitment. Cell Rep. 3:1617–28 [Google Scholar]
  104. Grajales-Reyes GE, Iwata A, Albring J, Wu X, Tussiwand R. 104.  et al. 2015. Batf3 maintains autoactivation of Irf8 for commitment of a CD8α+ conventional DC clonogenic progenitor. Nat. Immunol. 16:708–17 [Google Scholar]
  105. Wu X, Satpathy AT, KC W, Liu P, Murphy TL, Murphy KM. 105.  2013. Bcl11a controls Flt3 expression in early hematopoietic progenitors and is required for pDC development in vivo. PLOS ONE 8:e64800 [Google Scholar]
  106. Ippolito GC, Dekker JD, Wang YH, Lee BK, Shaffer AL III. 106.  et al. 2014. Dendritic cell fate is determined by BCL11A. PNAS 111:E998–1006 [Google Scholar]
  107. Satpathy AT, Briseno CG, Cai X, Michael DG, Chou C. 107.  et al. 2014. Runx1 and Cbfβ regulate the development of Flt3+ dendritic cell progenitors and restrict myeloproliferative disorder. Blood 123:2968–77 [Google Scholar]
  108. Wang Q, Stacy T, Miller JD, Lewis AF, Gu TL. 108.  et al. 1996. The CBFβ subunit is essential for CBFα2 (AML1) function in vivo. Cell 87:697–708 [Google Scholar]
  109. Manz MG, Traver D, Miyamoto T, Weissman IL, Akashi K. 109.  2001. Dendritic cell potentials of early lymphoid and myeloid progenitors. Blood 97:3333–41 [Google Scholar]
  110. Wu L, D’Amico A, Hochrein H, O’Keeffe M, Shortman K, Lucas K. 110.  2001. Development of thymic and splenic dendritic cell populations from different hemopoietic precursors. Blood 98:3376–82 [Google Scholar]
  111. Iwasaki H, Akashi K. 111.  2007. Myeloid lineage commitment from the hematopoietic stem cell. Immunity 26:726–40 [Google Scholar]
  112. D’Amico A, Wu L. 112.  2003. The early progenitors of mouse dendritic cells and plasmacytoid predendritic cells are within the bone marrow hemopoietic precursors expressing Flt31. J. Exp. Med. 198:293–303 [Google Scholar]
  113. Becker AM, Michael DG, Satpathy AT, Sciammas R, Singh H, Bhattacharya D. 113.  2012. IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid mouse progenitors. Blood 119:2003–12 [Google Scholar]
  114. Kurotaki D, Yamamoto M, Nishiyama A, Uno K, Ban T. 114.  et al. 2014. IRF8 inhibits C/EBPα activity to restrain mononuclear phagocyte progenitors from differentiating into neutrophils. Nat. Commun. 5:4978 [Google Scholar]
  115. Liu K, Victora GD, Schwickert TA, Guermonprez P, Meredith MM. 115.  et al. 2009. In vivo analysis of dendritic cell development and homeostasis. Science 324:392–97 [Google Scholar]
  116. Sallusto F, Lanzavecchia A. 116.  1994. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med. 179:1109–18 [Google Scholar]
  117. Cheong C, Matos I, Choi JH, Dandamudi DB, Shrestha E. 117.  et al. 2010. Microbial stimulation fully differentiates monocytes to DC-SIGN/CD209+ dendritic cells for immune T cell areas. Cell 143:416–29 [Google Scholar]
  118. Albert ML, Sauter B, Bhardwaj N. 118.  1998. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392:86–89 [Google Scholar]
  119. Meredith MM, Liu K, Darrasse-Jeze G, Kamphorst AO, Schreiber HA. 119.  et al. 2012. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J. Exp. Med. 209:1153–65 [Google Scholar]
  120. Helft J, Bottcher J, Chakravarty P, Zelenay S, Huotari J. 120.  et al. 2015. GM-CSF mouse bone marrow cultures comprise a heterogeneous population of CD11c+MHCII+ macrophages and dendritic cells. Immunity 42:1197–211 [Google Scholar]
  121. Greter M, Helft J, Chow A, Hashimoto D, Mortha A. 121.  et al. 2012. GM-CSF controls nonlymphoid tissue dendritic cell homeostasis but is dispensable for the differentiation of inflammatory dendritic cells. Immunity 36:1031–46 [Google Scholar]
  122. King IL, Kroenke MA, Segal BM. 122.  2010. GM-CSF-dependent, CD103+ dermal dendritic cells play a critical role in Th effector cell differentiation after subcutaneous immunization. J. Exp. Med. 207:953–61 [Google Scholar]
  123. Edelson BT, Bradstreet TR, KC W, Hildner K, Herzog JW. 123.  et al. 2011. Batf3-dependent CD11blow/− peripheral dendritic cells are GM-CSF-independent and are not required for Th cell priming after subcutaneous immunization. PLOS ONE 6:e25660 [Google Scholar]
  124. Jackson JT, Hu Y, Liu R, Masson F, D’Amico A. 124.  et al. 2011. Id2 expression delineates differential checkpoints in the genetic program of CD8α+ and CD103+ dendritic cell lineages. EMBO J. 30:2690–704 [Google Scholar]
  125. Mayer CT, Ghorbani P, Nandan A, Dudek M, Arnold-Schrauf C. 125.  et al. 2014. Selective and efficient generation of functional Batf3-dependent CD103+ dendritic cells from mouse bone marrow. Blood 124:3081–91 [Google Scholar]
  126. Collin M, Bigley V, Haniffa M, Hambleton S. 126.  2011. Human dendritic cell deficiency: the missing ID?. Nat. Rev. Immunol. 11:575–83 [Google Scholar]
  127. Cisse B, Caton ML, Lehner M, Maeda T, Scheu S. 127.  et al. 2008. Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development. Cell 135:37–48 [Google Scholar]
  128. Kee BL. 128.  2009. E and ID proteins branch out. Nat. Rev. Immunol. 9:175–84 [Google Scholar]
  129. Nagasawa M, Schmidlin H, Hazekamp MG, Schotte R, Blom B. 129.  2008. Development of human plasmacytoid dendritic cells depends on the combined action of the basic helix-loop-helix factor E2-2 and the Ets factor Spi-B. Eur. J. Immunol. 38:2389–400 [Google Scholar]
  130. Ghosh HS, Cisse B, Bunin A, Lewis KL, Reizis B. 130.  2010. Continuous expression of the transcription factor e2-2 maintains the cell fate of mature plasmacytoid dendritic cells. Immunity 33:905–16 [Google Scholar]
  131. Satpathy AT, Murphy KM, KC W. 131.  2011. Transcription factor networks in dendritic cell development. Semin. Immunol. 23:388–97 [Google Scholar]
  132. Schlitzer A, Loschko J, Mair K, Vogelmann R, Henkel L. 132.  et al. 2011. Identification of CCR9 murine plasmacytoid DC precursors with plasticity to differentiate into conventional DCs. Blood 117:6562–70 [Google Scholar]
  133. Onai N, Kurabayashi K, Hosoi-Amaike M, Toyama-Sorimachi N, Matsushima K. 133.  et al. 2013. A clonogenic progenitor with prominent plasmacytoid dendritic cell developmental potential. Immunity 38:943–57 [Google Scholar]
  134. Suzuki S, Honma K, Matsuyama T, Suzuki K, Toriyama K. 134.  et al. 2004. Critical roles of interferon regulatory factor 4 in CD11bhighCD8α dendritic cell development. PNAS 101:8981–86 [Google Scholar]
  135. Tamura T, Tailor P, Yamaoka K, Kong HJ, Tsujimura H. 135.  et al. 2005. IFN regulatory factor-4 and -8 govern dendritic cell subset development and their functional diversity. J. Immunol. 174:2573–81 [Google Scholar]
  136. Belz GT, Nutt SL. 136.  2012. Transcriptional programming of the dendritic cell network. Nat. Rev. Immunol. 12:101–13 [Google Scholar]
  137. Satpathy AT, KC W, Albring JC, Edelson BT, Kretzer NM. 137.  et al. 2012. Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J. Exp. Med. 209:1135–52 [Google Scholar]
  138. Liu K, Waskow C, Liu X, Yao K, Hoh J, Nussenzweig M. 138.  2007. Origin of dendritic cells in peripheral lymphoid organs of mice. Nat. Immunol. 8:578–83 [Google Scholar]
  139. Meredith MM, Liu K, Kamphorst AO, Idoyaga J, Yamane A. 139.  et al. 2012. Zinc finger transcription factor zDC is a negative regulator required to prevent activation of classical dendritic cells in the steady state. J. Exp. Med. 209:1583–93 [Google Scholar]
  140. Wang H, Yan M, Sun J, Jain S, Yoshimi R. 140.  et al. 2014. A reporter mouse reveals lineage-specific and heterogeneous expression of IRF8 during lymphoid and myeloid cell differentiation. J. Immunol. 193:1766–77 [Google Scholar]
  141. Xu W, Domingues RG, Fonseca-Pereira D, Ferreira M, Ribeiro H. 141.  et al. 2015. NFIL3 orchestrates the emergence of common helper innate lymphoid cell precursors. Cell Rep. 10:2043–54 [Google Scholar]
  142. Seillet C, Rankin LC, Groom JR, Mielke LA, Tellier J. 142.  et al. 2014. Nfil3 is required for the development of all innate lymphoid cell subsets. J. Exp. Med. 211:1733–40 [Google Scholar]
  143. Geiger TL, Abt MC, Gasteiger G, Firth MA, O’Connor MH. 143.  et al. 2014. Nfil3 is crucial for development of innate lymphoid cells and host protection against intestinal pathogens. J. Exp. Med. 211:1723–31 [Google Scholar]
  144. Kusunoki T, Sugai M, Katakai T, Omatsu Y, Iyoda T. 144.  et al. 2003. TH2 dominance and defective development of a CD8+ dendritic cell subset in Id2-deficient mice. J. Allergy Clin. Immunol. 111:136–42 [Google Scholar]
  145. Laiosa CV, Stadtfeld M, Graf T. 145.  2006. Determinants of lymphoid-myeloid lineage diversification. Ann. Rev. Immunol. 24:705–38 [Google Scholar]
  146. Murphy TL, Tussiwand R, Murphy KM. 146.  2013. Specificity through cooperation: BATF-IRF interactions control immune-regulatory networks. Nat. Rev. Immunol. 13:499–509 [Google Scholar]
  147. Tussiwand R, Lee WL, Murphy TL, Mashayekhi M, Wumesh KC. 147.  et al. 2012. Compensatory dendritic cell development mediated by BATF-IRF interactions. Nature 490:502–7 [Google Scholar]
  148. Naik SH, Metcalf D, van Nieuwenhuijze A, Wicks I, Wu L. 148.  et al. 2006. Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. Nat. Immunol. 7:663–71 [Google Scholar]
  149. Schlitzer A, Heiseke AF, Einwachter H, Reindl W, Schiemann M. 149.  et al. 2012. Tissue-specific differentiation of a circulating CCR9 pDC-like common dendritic cell precursor. Blood 119:6063–71 [Google Scholar]
  150. Schlitzer A, Sivakamasundari V, Chen J, Sumatoh HR, Schreuder J. 150.  et al. 2015. Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow. Nat. Immunol. 16:718–28 [Google Scholar]
  151. Poulin LF, Reyal Y, Uronen-Hansson H, Schraml B, Sancho D. 151.  et al. 2012. DNGR-1 is a specific and universal marker of mouse and human Batf3-dependent dendritic cells in lymphoid and non-lymphoid tissues. Blood 119:6052–62 [Google Scholar]
  152. Seillet C, Jackson JT, Markey KA, Hill GR, Macdonald KP. 152.  et al. 2013. CD8α+ DCs can be induced in the absence of transcription factors Id2, Nfil3 and Batf3. Blood 121:1574–83 [Google Scholar]
  153. Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F. 153.  et al. 2014. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343:776–79 [Google Scholar]
  154. Radtke F, Fasnacht N, MacDonald HR. 154.  2010. Notch signaling in the immune system. Immunity 32:14–27 [Google Scholar]
  155. Kabashima K, Banks TA, Ansel KM, Lu TT, Ware CF, Cyster JG. 155.  2005. Intrinsic lymphotoxin-beta receptor requirement for homeostasis of lymphoid tissue dendritic cells. Immunity 22:439–50 [Google Scholar]
  156. Akbari M, Honma K, Kimura D, Miyakoda M, Kimura K. 156.  et al. 2014. IRF4 in dendritic cells inhibits IL-12 production and controls Th1 immune responses against Leishmania major. J. Immunol. 192:2271–79 [Google Scholar]
  157. Wagner AH, Conzelmann M, Fitzer F, Giese T, Gulow K. 157.  et al. 2015. JAK1/STAT3 activation directly inhibits IL-12 production in dendritic cells by preventing CDK9/P-TEFb recruitment to the p35 promoter. Biochem. Pharmacol. 96:52–64 [Google Scholar]
  158. Segre JA, Bauer C, Fuchs E. 158.  1999. Klf4 is a transcription factor required for establishing the barrier function of the skin. Nat. Genet. 22:356–60 [Google Scholar]
  159. Dang DT, Pevsner J, Yang VW. 159.  2000. The biology of the mammalian Kruppel-like family of transcription factors. Int. J. Biochem. Cell Biol. 32:1103–21 [Google Scholar]
  160. Katz JP, Perreault N, Goldstein BG, Lee CS, Labosky PA. 160.  et al. 2002. The zinc-finger transcription factor Klf4 is required for terminal differentiation of goblet cells in the colon. Development 129:2619–28 [Google Scholar]
  161. Ghaleb AM, Nandan MO, Chanchevalap S, Dalton WB, Hisamuddin IM, Yang VW. 161.  2005. Kruppel-like factors 4 and 5: The yin and yang regulators of cellular proliferation. Cell Res. 15:92–96 [Google Scholar]
  162. Feinberg MW, Wara AK, Cao Z, Lebedeva MA, Rosenbauer F. 162.  et al. 2007. The Kruppel-like factor KLF4 is a critical regulator of monocyte differentiation. EMBO J. 26:4138–48 [Google Scholar]
  163. Alder JK, Georgantas RW III, Hildreth RL, Kaplan IM, Morisot S. 163.  et al. 2008. Kruppel-like factor 4 is essential for inflammatory monocyte differentiation in vivo. J. Immunol. 180:5645–52 [Google Scholar]
  164. Zheng H, Pritchard DM, Yang X, Bennett E, Liu G. 164.  et al. 2009. KLF4 gene expression is inhibited by the Notch signaling pathway that controls goblet cell differentiation in mouse gastrointestinal tract. Am. J. Physiol. Gastrointest. Liver Physiol. 296:G490–98 [Google Scholar]
  165. McConnell BB, Yang VW. 165.  2010. Mammalian Kruppel-like factors in health and diseases. Physiol. Rev. 90:1337–81 [Google Scholar]
  166. Kurotaki D, Osato N, Nishiyama A, Yamamoto M, Ban T. 166.  et al. 2013. Essential role of the IRF8-KLF4 transcription factor cascade in murine monocyte differentiation. Blood 121:1839–49 [Google Scholar]
  167. Terry RL, Miller SD. 167.  2014. Molecular control of monocyte development. Cell Immunol. 291:16–21 [Google Scholar]
  168. Lee J, Breton G, Oliveira TY, Zhou YJ, Aljoufi A. 168.  et al. 2015. Restricted dendritic cell and monocyte progenitors in human cord blood and bone marrow. J. Exp. Med. 212:385–99 [Google Scholar]
  169. Breton G, Lee J, Zhou YJ, Schreiber JJ, Keler T. 169.  et al. 2015. Circulating precursors of human CD1c+ and CD141+ dendritic cells. J. Exp. Med. 212:401–13 [Google Scholar]
  170. Manz MG, Miyamoto T, Akashi K, Weissman IL. 170.  2002. Prospective isolation of human clonogenic common myeloid progenitors. PNAS 99:11872–77 [Google Scholar]
  171. KC W, Satpathy AT, Rapaport AS, Briseno CG, Wu X. 171.  et al. 2014. L-Myc expression by dendritic cells is required for optimal T-cell priming. Nature 507:243–47 [Google Scholar]
  172. Dang CV. 172.  2012. MYC on the path to cancer. Cell 149:22–35 [Google Scholar]
  173. Wang R, Dillon CP, Shi LZ, Milasta S, Carter R. 173.  et al. 2011. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35:871–82 [Google Scholar]
  174. Rahl PB, Lin CY, Seila AC, Flynn RA, McCuine S. 174.  et al. 2010. c-Myc regulates transcriptional pause release. Cell 141:432–45 [Google Scholar]
  175. Lin CY, Loven J, Rahl PB, Paranal RM, Burge CB. 175.  et al. 2012. Transcriptional amplification in tumor cells with elevated c-Myc. Cell 151:56–67 [Google Scholar]
  176. Nie Z, Hu G, Wei G, Cui K, Yamane A. 176.  et al. 2012. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell 151:68–79 [Google Scholar]
  177. Wasylishen AR, Stojanova A, Oliveri S, Rust AC, Schimmer AD, Penn LZ. 177.  2011. New model systems provide insights into Myc-induced transformation. Oncogene 30:3727–34 [Google Scholar]
  178. Nakagawa M, Takizawa N, Narita M, Ichisaka T, Yamanaka S. 178.  2010. Promotion of direct reprogramming by transformation-deficient Myc. PNAS 107:14152–57 [Google Scholar]
  179. Hatton KS, Mahon K, Chin L, Chiu FC, Lee HW. 179.  et al. 1996. Expression and activity of L-Myc in normal mouse development. Mol. Cell. Biol. 16:1794–804 [Google Scholar]
  180. Lauvau G, Vijh S, Kong P, Horng T, Kerksiek K. 180.  et al. 2001. Priming of memory but not effector CD8 T cells by a killed bacterial vaccine. Science 294:1735–39 [Google Scholar]
  181. Akashi K, Traver D, Miyamoto T, Weissman IL. 181.  2000. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404:193–97 [Google Scholar]
/content/journals/10.1146/annurev-immunol-032713-120204
Loading
/content/journals/10.1146/annurev-immunol-032713-120204
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error