1932

Abstract

Mucosal-associated invariant T (MAIT) cells have been attracting increasing attention over the last few years as a potent unconventional T cell subset. Three factors largely account for this emerging interest. Firstly, these cells are abundant in humans, both in circulation and especially in some tissues such as the liver. Secondly is the discovery of a ligand that has uncovered their microbial targets, and also allowed for the development of tools to accurately track the cells in both humans and mice. Finally, it appears that the cells not only have a diverse range of functions but also are sensitive to a range of inflammatory triggers that can enhance or even bypass T cell receptor–mediated signals—substantially broadening their likely impact in health and disease. In this review we discuss how MAIT cells display antimicrobial, homeostatic, and amplifier roles in vivo, and how this may lead to protection and potentially pathology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-080719-015428
2020-04-26
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/immunol/38/1/annurev-immunol-080719-015428.html?itemId=/content/journals/10.1146/annurev-immunol-080719-015428&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Porcelli S, Yockey CE, Brenner MB, Balk SP 1993. Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD48 α/β T cells demonstrates preferential use of several Vβ genes and an invariant TCR α chain. J. Exp. Med. 178:11–16
    [Google Scholar]
  2. 2. 
    Tilloy F, Treiner E, Park SH, Garcia C, Lemonnier F et al. 1999. An invariant T cell receptor α chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted α/β T cell subpopulation in mammals. J. Exp. Med. 189:121907–21
    [Google Scholar]
  3. 3. 
    Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V et al. 2003. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422:6928164–69
    [Google Scholar]
  4. 4. 
    Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B et al. 2012. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491:7426717–23
    [Google Scholar]
  5. 5. 
    Corbett AJ, Eckle SBG, Birkinshaw RW, Liu L, Patel O et al. 2014. T-cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature 509:7500361–65
    [Google Scholar]
  6. 6. 
    Gold MC, Cerri S, Smyk-Pearson S, Cansler ME, Vogt TM et al. 2010. Human mucosal associated invariant T cells detect bacterially infected cells. PLOS Biol 8:6e1000407
    [Google Scholar]
  7. 7. 
    Le Bourhis L, Martin E, Péguillet I, Guihot A, Froux N et al. 2010. Antimicrobial activity of mucosal-associated invariant T cells. Nat. Immunol. 11:8701–8
    [Google Scholar]
  8. 8. 
    Georgel P, Radosavljevic M, Macquin C, Bahram S 2011. The non-conventional MHC class I MR1 molecule controls infection by Klebsiellapneumoniae in mice. Mol. Immunol. 48:5769–75
    [Google Scholar]
  9. 9. 
    Martin E, Treiner E, Duban L, Guerri L, Laude H et al. 2009. Stepwise development of MAIT cells in mouse and human. PLOS Biol 7:3e54
    [Google Scholar]
  10. 10. 
    Dusseaux M, Martin E, Serriari N, Péguillet I, Premel V et al. 2011. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood 117:41250–59
    [Google Scholar]
  11. 11. 
    Billerbeck E, Kang Y-H, Walker L, Lockstone H, Grafmueller S et al. 2010. Analysis of CD161 expression on human CD8+ T cells defines a distinct functional subset with tissue-homing properties. PNAS 107:73006–11
    [Google Scholar]
  12. 12. 
    Garner LC, Klenerman P, Provine NM 2018. Insights into mucosal-associated invariant T cell biology from studies of invariant natural killer T cells. Front. Immunol. 9:911–25
    [Google Scholar]
  13. 13. 
    Ussher JE, Bilton M, Attwod E, Shadwell J, Richardson R et al. 2014. CD161++ CD8+ T cells, including the MAIT cell subset, are specifically activated by IL-12+IL-18 in a TCR-independent manner. Eur. J. Immunol. 44:1195–203
    [Google Scholar]
  14. 14. 
    Reantragoon R, Corbett AJ, Sakala IG, Gherardin NA, Furness JB et al. 2013. Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells. J. Exp. Med. 210:112305–20
    [Google Scholar]
  15. 15. 
    Rahimpour A, Koay HF, Enders A, Clanchy R, Eckle SBG et al. 2015. Identification of phenotypically and functionally heterogeneous mouse mucosal-associated invariant T cells using MR1 tetramers. J. Exp. Med. 212:71095–108
    [Google Scholar]
  16. 16. 
    Dias J, Leeansyah E, Sandberg JK 2017. Multiple layers of heterogeneity and subset diversity in human MAIT cell responses to distinct microorganisms and to innate cytokines. PNAS 114:27E5434–43
    [Google Scholar]
  17. 17. 
    Zhou L, Chong MMW, Littman DR 2009. Plasticity of CD4+ T cell lineage differentiation. Immunity 30:5646–55
    [Google Scholar]
  18. 18. 
    Fergusson JR, Smith KE, Fleming VM, Rajoriya N, Newell EW et al. 2014. CD161 defines a transcriptional and functional phenotype across distinct human T cell lineages. Cell Rep 9:31075–88
    [Google Scholar]
  19. 19. 
    Le Bourhis L, Dusseaux M, Bohineust A, Bessoles SP, Martin E et al. 2013. MAIT cells detect and efficiently lyse bacterially-infected epithelial cells. PLOS Pathog 9:10e1003681
    [Google Scholar]
  20. 20. 
    Gherardin NA, Souter MN, Koay H-F, Mangas KM, Seemann T et al. 2018. Human blood MAIT cell subsets defined using MR1 tetramers. Immunol. Cell Biol. 96:5507–25
    [Google Scholar]
  21. 21. 
    Walker LJ, Kang Y-H, Smith MO, Tharmalingham H, Ramamurthy N et al. 2012. Human MAIT and CD8αα cells develop from a pool of type-17 precommitted CD8+ T cells. Blood 119:2422–33
    [Google Scholar]
  22. 22. 
    Dias J, Boulouis C, Gorin J-B, van den Biggelaar RHGA, Lal KG et al. 2018. The CD4CD8 MAIT cell subpopulation is a functionally distinct subset developmentally related to the main CD8+ MAIT cell pool. PNAS 115:E11513–22
    [Google Scholar]
  23. 23. 
    Kurioka A, Jahun AS, Hannaway RF, Walker LJ, Fergusson JR et al. 2017. Shared and distinct phenotypes and functions of human CD161++ Vα7.2+ T cell subsets. Front. Immunol. 8:1031
    [Google Scholar]
  24. 24. 
    Keller AN, Eckle SBG, Xu W, Liu L, Hughes VA et al. 2017. Drugs and drug-like molecules can modulate the function of mucosal-associated invariant T cells. Nat. Immunol. 18:402–11
    [Google Scholar]
  25. 25. 
    Harriff MJ, McMurtrey C, Froyd CA, Jin H, Cansler M et al. 2018. MR1 displays the microbial metabolome driving selective MR1-restricted T cell receptor usage. Sci. Immunol. 3:25eaao2556
    [Google Scholar]
  26. 26. 
    Tastan C, Karhan E, Zhou W, Fleming E, Voigt AY et al. 2018. Tuning of human MAIT cell activation by commensal bacteria species and MR1-dependent T-cell presentation. Mucosal Immunol 11:61591–605
    [Google Scholar]
  27. 27. 
    Hickey RJ. 1945. The inactivation of iron by 2,2′-bipyridine and its effect on riboflavin synthesis by Clostridiumacetobutylicum. . Arch. Biochem 8:439–47
    [Google Scholar]
  28. 28. 
    Kurioka A, van Wilgenburg B, Javan RR, Hoyle R, van Tonder AJ et al. 2018. Diverse Streptococcuspneumoniae strains drive a mucosal-associated invariant T-cell response through major histocompatibility complex class I-related molecule-dependent and cytokine-driven pathways. J. Infect. Dis. 217:6988–99
    [Google Scholar]
  29. 29. 
    Patel O, Kjer-Nielsen L, Le Nours J, Eckle SBG, Birkinshaw R et al. 2013. Recognition of vitamin B metabolites by mucosal-associated invariant T cells. Nat. Commun. 4:12142
    [Google Scholar]
  30. 30. 
    Boudinot P, Mondot S, Jouneau L, Teyton L, Lefranc M-P, Lantz O 2016. Restricting nonclassical MHC genes coevolve with TRAV genes used by innate-like T cells in mammals. PNAS 113:21E2983–92
    [Google Scholar]
  31. 31. 
    Leeansyah E, Svärd J, Dias J, Buggert M, Nyström J et al. 2015. Arming of MAIT cell cytolytic antimicrobial activity is induced by IL-7 and defective in HIV-1 infection. PLOS Pathog 11:8e1005072
    [Google Scholar]
  32. 32. 
    Kurioka A, Ussher JE, Cosgrove C, Clough C, Fergusson JR et al. 2015. MAIT cells are licensed through granzyme exchange to kill bacterially sensitized targets. Mucosal Immunol 8:2429–40
    [Google Scholar]
  33. 33. 
    Cui Y, Franciszkiewicz K, Mburu YK, Mondot S, Le Bourhis L et al. 2015. Mucosal-associated invariant T cell-rich congenic mouse strain allows functional evaluation. J. Clin. Investig. 125:114171–85
    [Google Scholar]
  34. 34. 
    Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH 2000. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100:6655–69
    [Google Scholar]
  35. 35. 
    Pearce EL, Mullen AC, Martins GA, Krawczyk CM, Hutchins AS et al. 2003. Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science 302:56471041–43
    [Google Scholar]
  36. 36. 
    Kallies A, Xin A, Belz GT, Nutt SL 2009. Blimp-1 transcription factor is required for the differentiation of effector CD8+ T cells and memory responses. Immunity 31:2283–95
    [Google Scholar]
  37. 37. 
    Rutishauser RL, Martins GA, Kalachikov S, Chandele A, Parish IA et al. 2009. Transcriptional repressor Blimp-1 promotes CD8+ T cell terminal differentiation and represses the acquisition of central memory T cell properties. Immunity 31:2296–308
    [Google Scholar]
  38. 38. 
    Walch M, Dotiwala F, Mulik S, Thiery J, Kirchhausen T et al. 2014. Cytotoxic cells kill intracellular bacteria through granulysin-mediated delivery of granzymes. Cell 157:61309–23
    [Google Scholar]
  39. 39. 
    Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A et al. 2006. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126:61121–33
    [Google Scholar]
  40. 40. 
    Wilson RP, Ives ML, Rao G, Lau A, Payne K et al. 2015. STAT3 is a critical cell-intrinsic regulator of human unconventional T cell numbers and function. J. Exp. Med. 212:6855–64
    [Google Scholar]
  41. 41. 
    Gibbs A, Leeansyah E, Introini A, Paquin-Proulx D, Hasselrot K et al. 2017. MAIT cells reside in the female genital mucosa and are biased towards IL-17 and IL-22 production in response to bacterial stimulation. Mucosal Immunol 10:135–45
    [Google Scholar]
  42. 42. 
    Turtle CJ, Delrow J, Joslyn RC, Swanson HM, Basom R et al. 2011. Innate signals overcome acquired TCR signaling pathway regulation and govern the fate of human CD161hi CD8α+ semi-invariant T cells. Blood 118:102752–62
    [Google Scholar]
  43. 43. 
    Gracey E, Qaiyum Z, Almaghlouth I, Lawson D, Karki S et al. 2016. IL-7 primes IL-17 in mucosal-associated invariant T (MAIT) cells, which contribute to the Th17-axis in ankylosing spondylitis. Ann. Rheum. Dis. 75:122124–32
    [Google Scholar]
  44. 44. 
    Tang XZ, Jo J, Tan AT, Sandalova E, Chia A et al. 2013. IL-7 licenses activation of human liver intrasinusoidal mucosal-associated invariant T cells. J. Immunol. 190:73142–52
    [Google Scholar]
  45. 45. 
    Sobkowiak MJ, Davanian H, Heymann R, Gibbs A, Emgård J et al. 2018. Tissue-resident MAIT cell populations in human oral mucosa exhibit an activated profile and produce IL-17. Eur. J. Immunol. 423:1018–11
    [Google Scholar]
  46. 46. 
    Korn T, Bettelli E, Oukka M, Kuchroo VK 2009. IL-17 and Th17 cells. Annu. Rev. Immunol. 27:1485–517
    [Google Scholar]
  47. 47. 
    Provine NM, Binder B, FitzPatrick MEB, Schuch A, Garner LC et al. 2018. Unique and common features of innate-like human Vδ2+ γδT cells and mucosal-associated invariant T cells. Front. Immunol. 9:756
    [Google Scholar]
  48. 48. 
    Gutierrez-Arcelus M, Teslovich N, Mola AR, Polidoro RB, Nathan A et al. 2019. Lymphocyte innateness defined by transcriptional states reflects a balance between proliferation and effector functions. Nat. Commun. 10:1687
    [Google Scholar]
  49. 49. 
    Kovalovsky D, Uche OU, Eladad S, Hobbs RM, Yi W et al. 2008. The BTB-zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions. Nat. Immunol. 9:91055–64
    [Google Scholar]
  50. 50. 
    Mao A-P, Constantinides MG, Mathew R, Zuo Z, Chen X et al. 2016. Multiple layers of transcriptional regulation by PLZF in NKT-cell development. PNAS 113:277602–7
    [Google Scholar]
  51. 51. 
    Meller S, Di Domizio J, Voo KS, Friedrich HC, Chamilos G et al. 2015. TH17 cells promote microbial killing and innate immune sensing of DNA via interleukin 26. Nat. Immunol. 16:9970–79
    [Google Scholar]
  52. 52. 
    West NR, Hegazy AN, Owens BMJ, Bullers SJ, Linggi B et al. 2017. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease. Nat. Med 23:5579–89 Erratum. 2017 Nat. Med 23:6788
    [Google Scholar]
  53. 53. 
    Leng T, Akther HD, Hackstein C-P, Powell K, King T et al. 2019. TCR and inflammatory signals tune human MAIT cells to exert specific tissue repair and effector functions. Cell Rep 28:123077–91.e5
    [Google Scholar]
  54. 54. 
    Lamichhane R, Schneider M, de la Harpe SM, Harrop TWR, Hannaway RF et al. 2019. TCR- or cytokine-activated CD8+ mucosal-associated invariant T cells are rapid polyfunctional effectors that can coordinate immune responses. Cell Rep 28:123061–65.e5
    [Google Scholar]
  55. 55. 
    Hinks TSC, Marchi E, Jabeen M, Olshansky M, Kurioka A et al. 2019. Activation and in vivo evolution of the MAIT cell transcriptome in mice and humans reveals tissue repair functionality. Cell Rep 28:123249–62.e5
    [Google Scholar]
  56. 56. 
    Sato T, Thorlacius H, Johnston B, Staton TL, Xiang W et al. 2004. Role for CXCR6 in recruitment of activated CD8+ lymphocytes to inflamed liver. J. Immunol. 174:1277–83
    [Google Scholar]
  57. 57. 
    Jo J, Tan AT, Ussher JE, Sandalova E, Tang X-Z et al. 2014. Toll-like receptor 8 agonist and bacteria trigger potent activation of innate immune cells in human liver. PLOS Pathog 10:6e1004210
    [Google Scholar]
  58. 58. 
    Singh SP, Zhang HH, Tsang H, Gardina PJ, Myers TG et al. 2015. PLZF regulates CCR6 and is critical for the acquisition and maintenance of the Th17 phenotype in human cells. J. Immunol. 194:94350–61
    [Google Scholar]
  59. 59. 
    Lee CH, Zhang HH, Singh SP, Koo L, Kabat J et al. 2018. C/EBPδ drives interactions between human MAIT cells and endothelial cells that are important for extravasation. eLife 7:e32532
    [Google Scholar]
  60. 60. 
    Mondal N, Buffone A Jr, Neelamegham S 2014. Distinct glycosyltransferases synthesize E-selectin ligands in human versus mouse leukocytes. Cell Adhes. Migr 7:3288–92
    [Google Scholar]
  61. 61. 
    Phillips ML, Nudelman E, Gaeta FC, Perez M, Singhal AK et al. 1990. ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-Lex. Science 250:49841130–32
    [Google Scholar]
  62. 62. 
    Salou M, Legoux F, Gilet J, Darbois A, du Halgouet A et al. 2019. A common transcriptomic program acquired in the thymus defines tissue residency of MAIT and NKT subsets. J. Exp. Med. 216:1133–51
    [Google Scholar]
  63. 63. 
    Voillet V, Buggert M, Slichter CK, Berkson JD, Mair F et al. 2018. Human MAIT cells exit peripheral tissues and recirculate via lymph in steady state conditions. JCI Insight 3:798487
    [Google Scholar]
  64. 64. 
    Koay H-F, Godfrey DI, Pellicci DG 2018. Development of mucosal-associated invariant T cells. Immunol. Cell Biol. 96:6598–606
    [Google Scholar]
  65. 65. 
    Seach N, Guerri L, Le Bourhis L, Mburu Y, Cui Y et al. 2013. Double positive thymocytes select mucosal-associated invariant T cells. J. Immunol. 191:126002–9
    [Google Scholar]
  66. 66. 
    Gold MC, Eid T, Smyk-Pearson S, Eberling Y, Swarbrick GM et al. 2013. Human thymic MR1-restricted MAIT cells are innate pathogen-reactive effectors that adapt following thymic egress. Mucosal Immunol 6:135–44
    [Google Scholar]
  67. 67. 
    Bendelac A. 1995. Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J. Exp. Med. 182:62091–96
    [Google Scholar]
  68. 68. 
    Legoux F, Bellet D, Daviaud C, El Morr Y, Darbois A et al. 2019. Microbial metabolites control the thymic development of mucosal-associated invariant T cells. Science 366:6464494–99
    [Google Scholar]
  69. 69. 
    Koay H-F, Gherardin NA, Enders A, Loh L, Mackay LK et al. 2016. A three-stage intrathymic development pathway for the mucosal-associated invariant T cell lineage. Nat. Immunol. 17:111300–11
    [Google Scholar]
  70. 70. 
    Winter SJ, Kunze-Schumacher H, Imelmann E, Grewers Z, Osthues T, Krueger A 2019. MicroRNA miR-181a/b-1 controls MAIT cell development. Immunol. Cell Biol. 97:190–202
    [Google Scholar]
  71. 71. 
    Legoux F, Gilet J, Procopio E, Echasserieau K, Bernardeau K, Lantz O 2019. Molecular mechanisms of lineage decisions in metabolite-specific T cells. Nat. Immunol. 20:91244–55
    [Google Scholar]
  72. 72. 
    Novak J, Dobrovolny J, Novakova L, Kozak T 2014. The decrease in number and change in phenotype of mucosal-associated invariant T cells in the elderly and differences in men and women of reproductive age. Scand. J. Immunol. 80:4271–75
    [Google Scholar]
  73. 73. 
    Ben Youssef G, Tourret M, Salou M, Ghazarian L, Houdouin V et al. 2018. Ontogeny of human mucosal-associated invariant T cells and related T cell subsets. J. Exp. Med. 215:2459–79
    [Google Scholar]
  74. 74. 
    Leeansyah E, Loh L, Nixon DF, Sandberg JK 2014. Acquisition of innate-like microbial reactivity in mucosal tissues during human fetal MAIT-cell development. Nat. Commun. 5:3143
    [Google Scholar]
  75. 75. 
    Chen Z, Wang H, D'Souza C, Sun S, Kostenko L et al. 2017. Mucosal-associated invariant T-cell activation and accumulation after in vivo infection depends on microbial riboflavin synthesis and co-stimulatory signals. Mucosal Immunol 10:158–68
    [Google Scholar]
  76. 76. 
    Meermeier EW, Laugel BF, Sewell AK, Corbett AJ, Rossjohn J et al. 2016. Human TRAV1–2-negative MR1-restricted T cells detect S.pyogenes and alternatives to MAIT riboflavin-based antigens. Nat. Commun. 7:12506
    [Google Scholar]
  77. 77. 
    Gherardin NA, Keller AN, Woolley RE, Le Nours J, Ritchie DS et al. 2016. Diversity of T cells restricted by the MHC class I-related molecule MR1 facilitates differential antigen recognition. Immunity 44:132–45
    [Google Scholar]
  78. 78. 
    Koay H-F, Gherardin NA, Xu C, Seneviratna R, Zhao Z et al. 2019. Diverse MR1-restricted T cells in mice and humans. Nat. Commun. 10:12243
    [Google Scholar]
  79. 79. 
    Lepore M, Kalinichenko A, Calogero S, Kumar P, Paleja B et al. 2017. Functionally diverse human T cells recognize non-microbial antigens presented by MR1. eLife 6:e24476 Correction 2017 eLife 6:e29743
    [Google Scholar]
  80. 80. 
    D'Souza C, Pediongco T, Wang H, Scheerlinck J-PY, Kostenko L et al. 2018. Mucosal-associated invariant T cells augment immunopathology and gastritis in chronic Helicobacter pylori infection. J. Immunol. 200:51901–16
    [Google Scholar]
  81. 81. 
    Chan AC, Leeansyah E, Cochrane A, d'Udekem d'Acoz Y, Mittag D et al. 2013. Ex-vivo analysis of human natural killer T cells demonstrates heterogeneity between tissues and within established CD4+ and CD4 subsets. Clin. Exp. Immunol. 172:1129–37
    [Google Scholar]
  82. 82. 
    Lee YJ, Wang H, Starrett GJ, Phuong V, Jameson SC, Hogquist KA 2015. Tissue-specific distribution of iNKT cells impacts their cytokine response. Immunity 43:3566–78
    [Google Scholar]
  83. 83. 
    Kawachi I, Maldonado J, Strader C, Gilfillan S 2006. MR1-restricted Vα19i mucosal-associated invariant T cells are innate T cells in the gut lamina propria that provide a rapid and diverse cytokine response. J. Immunol. 176:31618–27
    [Google Scholar]
  84. 84. 
    Wang H, D'Souza C, Lim XY, Kostenko L, Pediongco TJ et al. 2018. MAIT cells protect against pulmonary Legionellalongbeachae infection. Nat. Commun. 9:13350
    [Google Scholar]
  85. 85. 
    Slichter CK, McDavid A, Miller HW, Finak G, Seymour BJ et al. 2016. Distinct activation thresholds of human conventional and innate-like memory T cells. JCI Insight 1:8e86292
    [Google Scholar]
  86. 86. 
    Riegert P, Wanner V, Bahram S 1998. Genomics, isoforms, expression, and phylogeny of the MHC class I-related MR1 gene. J. Immunol. 161:84066–77
    [Google Scholar]
  87. 87. 
    Spits H, Bernink JH, Lanier L 2016. NK cells and type 1 innate lymphoid cells: partners in host defense. Nat. Immunol. 17:7758–64
    [Google Scholar]
  88. 88. 
    Sattler A, Dang-Heine C, Reinke P, Babel N 2015. IL-15 dependent induction of IL-18 secretion as a feedback mechanism controlling human MAIT-cell effector functions. Eur. J. Immunol. 45:82286–98
    [Google Scholar]
  89. 89. 
    van Wilgenburg B, Scherwitzl I, Hutchinson EC, Leng T, Kurioka A et al. 2016. MAIT cells are activated during human viral infections. Nat. Commun. 7:11653
    [Google Scholar]
  90. 90. 
    Provine N, Amini A, Garner L, Dold C, Hutchings C 2019. Activation of MAIT cells plays a critical role in viral vector vaccine immunogenicity. bioRxiv 661397. https://doi.org/10.1101/661397
    [Crossref]
  91. 91. 
    Loh L, Wang Z, Sant S, Koutsakos M, Jegaskanda S et al. 2016. Human mucosal-associated invariant T cells contribute to antiviral influenza immunity via IL-18-dependent activation. PNAS 113:3610133–38
    [Google Scholar]
  92. 92. 
    Wallington JC, Williams AP, Staples KJ, Wilkinson TMA 2018. IL-12 and IL-7 synergize to control mucosal-associated invariant T-cell cytotoxic responses to bacterial infection. J. Allergy Clin. Immunol. 141:62182–95.e6
    [Google Scholar]
  93. 93. 
    Jesteadt E, Zhang I, Yu H, Meierovics A, Chua Yankelevich W-J, Cowley S 2018. Interleukin-18 is critical for mucosa-associated invariant T cell gamma interferon responses to Francisella species in vitro but not in vivo. Infect. Immun 86:5e00117–18
    [Google Scholar]
  94. 94. 
    Banki Z, Krabbendam L, Klaver D, Leng T, Kruis S et al. 2019. Antibody opsonization enhances MAIT cell responsiveness to bacteria via a TNF-dependent mechanism. Immunol. Cell Biol. 97:6538–51
    [Google Scholar]
  95. 95. 
    Toubal A, Nel I, Lotersztajn S, Lehuen A 2019. Mucosal-associated invariant T cells and disease. Nat. Rev. Immunol. 178:91–15
    [Google Scholar]
  96. 96. 
    Godfrey DI, Koay H-F, McCluskey J, Gherardin NA 2019. The biology and functional importance of MAIT cells. Nat. Immunol. 20:91110–28
    [Google Scholar]
  97. 97. 
    Cho YN, Kee SJ, Kim TJ, Jin HM, Kim MJ et al. 2014. Mucosal-associated invariant T cell deficiency in systemic lupus erythematosus. J. Immunol. 193:83891–901
    [Google Scholar]
  98. 98. 
    Cosgrove C, Ussher JE, Rauch A, Gärtner K, Kurioka A et al. 2013. Early and nonreversible decrease of CD161++ /MAIT cells in HIV infection. Blood 121:6951–61
    [Google Scholar]
  99. 99. 
    Leeansyah E, Ganesh A, Quigley MF, Sonnerborg A, Andersson J et al. 2013. Activation, exhaustion, and persistent decline of the antimicrobial MR1-restricted MAIT-cell population in chronic HIV-1 infection. Blood 121:71124–35
    [Google Scholar]
  100. 100. 
    Gérart S, Sibéril S, Martin E, Lenoir C, Aguilar C et al. 2013. Human iNKT and MAIT cells exhibit a PLZF-dependent proapoptotic propensity that is counterbalanced by XIAP. Blood 121:4614–23
    [Google Scholar]
  101. 101. 
    Bucsan AN, Rout N, Foreman TW, Khader SA, Rengarajan J, Kaushal D 2019. Mucosal-activated invariant T cells do not exhibit significant lung recruitment and proliferation profiles in macaques in response to infection with Mycobacterium tuberculosis CDC1551. Tuberculosis 116S:S11–18
    [Google Scholar]
  102. 102. 
    Duan M, Goswami S, Shi J-Y, Wu L-J, Wang X-Y et al. 2019. Activated and exhausted MAIT cells foster disease progression and indicate poor outcome in hepatocellular carcinoma. Clin. Cancer Res. 25:113304–16
    [Google Scholar]
  103. 103. 
    Zheng C, Zheng L, Yoo J-K, Guo H, Zhang Y et al. 2017. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 169:71342–56.e16
    [Google Scholar]
  104. 104. 
    Touch S, Assmann KE, Aron-Wisnewsky J, Marquet F, Rouault C et al. 2018. Mucosal-associated invariant T (MAIT) cells are depleted and prone to apoptosis in cardiometabolic disorders. FASEB J 32:95078–89
    [Google Scholar]
  105. 105. 
    Meierovics A, Yankelevich W-JC, Cowley SC 2013. MAIT cells are critical for optimal mucosal immune responses during in vivo pulmonary bacterial infection. PNAS 110:33E3119–28
    [Google Scholar]
  106. 106. 
    Meierovics AI, Cowley SC. 2016. MAIT cells promote inflammatory monocyte differentiation into dendritic cells during pulmonary intracellular infection. J. Exp. Med. 213:122793–809
    [Google Scholar]
  107. 107. 
    Salio M, Gasser O, Gonzalez-Lopez C, Martens A, Veerapen N et al. 2017. Activation of human mucosal-associated invariant T cells induces CD40L-dependent maturation of monocyte-derived and primary dendritic cells. J. Immunol. 199:82631–38
    [Google Scholar]
  108. 108. 
    Lane P, Traunecker A, Hubele S, Inui S, Lanzavecchia A, Gray D 1992. Activated human T cells express a ligand for the human B cell-associated antigen CD40 which participates in T cell-dependent activation of B lymphocytes. Eur. J. Immunol. 22:102573–78
    [Google Scholar]
  109. 109. 
    Ridge JP, Di Rosa F, Matzinger P 1998. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393:6684474–78
    [Google Scholar]
  110. 110. 
    Davey MS, Morgan MP, Liuzzi AR, Tyler CJ, Khan MWA et al. 2014. Microbe-specific unconventional T cells induce human neutrophil differentiation into antigen cross-presenting cells. J. Immunol. 193:73704–16
    [Google Scholar]
  111. 111. 
    Schneider M, Hannaway RF, Lamichhane R, de la Harpe SM, Tyndall JDA et al. 2019. Neutrophils suppress mucosal-associated invariant T cells. bioRxiv 745414. https://doi.org/10.1101/745414
    [Crossref]
  112. 112. 
    Victora GD, Nussenzweig MC. 2012. Germinal centers. Annu. Rev. Immunol. 30:429–57
    [Google Scholar]
  113. 113. 
    Bennett MS, Trivedi S, Iyer AS, Hale JS, Leung DT 2017. Human mucosal-associated invariant T (MAIT) cells possess capacity for B-cell help. J. Leukoc. Biol. 102:51261–69
    [Google Scholar]
  114. 114. 
    Ussher JE, van Wilgenburg B, Hannaway RF, Ruustal K, Phalora P et al. 2016. TLR signalling in human antigen-presenting cells regulates MR1-dependent activation of MAIT cells. Eur. J. Immunol. 46:71600–14
    [Google Scholar]
  115. 115. 
    Llibre A, Lopez-Macias C, Marafioti T, Mehta H, Partridge A et al. 2016. LLT1 and CD161 expression in human germinal centers promotes B cell activation and CXCR4 downregulation. J. Immunol. 196:52085–94
    [Google Scholar]
  116. 116. 
    Seshadri C, Thuong NTT, Mai NTH, Bang ND, Chau TTH et al. 2017. A polymorphism in human MR1 is associated with mRNA expression and susceptibility to tuberculosis. Genes Immun 18:18–14
    [Google Scholar]
  117. 117. 
    Okada S, Markle JG, Deenick EK, Mele F, Averbuch D et al. 2015. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science 349:6248606–13
    [Google Scholar]
  118. 118. 
    Sakala IG, Kjer-Nielsen L, Eickhoff CS, Wang X, Blazevic A et al. 2015. Functional heterogeneity and antimycobacterial effects of mouse mucosal-associated invariant T cells specific for riboflavin metabolites. J. Immunol. 195:2587–601
    [Google Scholar]
  119. 119. 
    Chua W-J, Truscott SM, Eickhoff CS, Blazevic A, Hoft DF, Hansen TH 2012. Polyclonal mucosa-associated invariant T cells have unique innate functions in bacterial infection. Infect. Immun. 80:93256–67
    [Google Scholar]
  120. 120. 
    Jiang J, Chen X, An H, Yang B, Zhang F, Cheng X 2016. Enhanced immune response of MAIT cells in tuberculous pleural effusions depends on cytokine signaling. Sci. Rep. 6:32320
    [Google Scholar]
  121. 121. 
    Greene JM, Dash P, Roy S, McMurtrey C, Awad W et al. 2016. MR1-restricted mucosal-associated invariant T (MAIT) cells respond to mycobacterial vaccination and infection in nonhuman primates. Mucosal Immunol 10:3802–13
    [Google Scholar]
  122. 122. 
    Krishnan N, Robertson BD, Thwaites G 2010. The mechanisms and consequences of the extra-pulmonary dissemination of Mycobacterium tuberculosis. . Tuberculosis 90:6361–66
    [Google Scholar]
  123. 123. 
    Yamamoto T, Kita M, Ohno T, Iwakura Y, Sekikawa K, Imanishi J 2004. Role of tumor necrosis factor-alpha and interferon-gamma in Helicobacter pylori infection. Microbiol. Immunol. 48:9647–54
    [Google Scholar]
  124. 124. 
    Shaler CR, Choi J, Rudak PT, Memarnejadian A, Szabo PA et al. 2017. MAIT cells launch a rapid, robust and distinct hyperinflammatory response to bacterial superantigens and quickly acquire an anergic phenotype that impedes their cognate antimicrobial function: defining a novel mechanism of superantigen-induced immunopathology and immunosuppression. PLOS Biol 15:6e2001930–35
    [Google Scholar]
  125. 125. 
    Rouxel O, Da Silva J, Beaudoin L, Nel I, Tard C et al. 2017. Cytotoxic and regulatory roles of mucosal-associated invariant T cells in type 1 diabetes. Nat. Immunol 18:121321–31 Correction. 2018. Nat. Immunol 19:91035
    [Google Scholar]
  126. 126. 
    Varelias A, Bunting MD, Ormerod KL, Koyama M, Olver SD et al. 2018. Recipient mucosal-associated invariant T cells control GVHD within the colon. J. Clin. Investig. 128:51919–36
    [Google Scholar]
  127. 127. 
    Kawaguchi K, Umeda K, Hiejima E, Iwai A, Mikami M et al. 2018. Influence of post-transplant mucosal-associated invariant T cell recovery on the development of acute graft-versus-host disease in allogeneic bone marrow transplantation. Int. J. Hematol. 108:166–75
    [Google Scholar]
  128. 128. 
    Li Y, Huang B, Jiang X, Chen W, Zhang J et al. 2018. Mucosal-associated invariant T cells improve nonalcoholic fatty liver disease through regulating macrophage polarization. Front. Immunol. 9:1994
    [Google Scholar]
  129. 129. 
    Linehan JL, Harrison OJ, Han S-J, Byrd AL, Vujkovic-Cvijin I et al. 2018. Non-classical immunity controls microbiota impact on skin immunity and tissue repair. Cell 172:4784–96.e18
    [Google Scholar]
  130. 130. 
    Wilgenburg BV, Loh L, Chen Z, Pediongco TJ, Wang H et al. 2018. MAIT cells contribute to protection against lethal influenza infection in vivo. Nat. Commun. 9:14706
    [Google Scholar]
  131. 131. 
    Sherlock JP, Taylor PC, Buckley CD 2015. The biology of IL-23 and IL-17 and their therapeutic targeting in rheumatic diseases. Curr. Opin. Rheumatol. 27:171–75
    [Google Scholar]
  132. 132. 
    Benson RA, McInnes IB, Garside P, Brewer JM 2017. Model answers: Rational application of murine models in arthritis research. Eur. J. Immunol. 48:132–38
    [Google Scholar]
  133. 133. 
    Chiba A, Tajima R, Tomi C, Miyazaki Y, Yamamura T, Miyake S 2012. Mucosal-associated invariant T cells promote inflammation and exacerbate disease in murine models of arthritis. Arthritis Rheum 64:1153–61
    [Google Scholar]
  134. 134. 
    Kim M, Yoo S-J, Kang SW, Kwon J, Choi I, Lee CH 2017. TNFα and IL-1β in the synovial fluid facilitate mucosal-associated invariant T (MAIT) cell migration. Cytokine 99:91–98
    [Google Scholar]
  135. 135. 
    Chiba A, Tamura N, Yoshikiyo K, Murayama G, Kitagaichi M et al. 2017. Activation status of mucosal-associated invariant T cells reflects disease activity and pathology of systemic lupus erythematosus. Arthritis Res. Ther. 19:158
    [Google Scholar]
  136. 136. 
    Hayashi E, Chiba A, Tada K, Haga K, Kitagaichi M et al. 2016. Involvement of mucosal-associated invariant T cells in ankylosing spondylitis. J. Rheumatol. 43:91695–703
    [Google Scholar]
  137. 137. 
    Toussirot É, Laheurte C, Gaugler B, Gabriel D, Saas P 2018. Increased IL-22- and IL-17A-producing mucosal-associated invariant T cells in the peripheral blood of patients with ankylosing spondylitis. Front. Immunol. 9:361–69
    [Google Scholar]
  138. 138. 
    Hegde P, Weiss E, Paradis V, Wan J, Mabire M et al. 2018. Mucosal-associated invariant T cells are a profibrogenic immune cell population in the liver. Nat. Commun. 9:12146
    [Google Scholar]
  139. 139. 
    Böttcher K, Rombouts K, Saffioti F, Roccarina D, Rosselli M et al. 2018. MAIT cells are chronically activated in patients with autoimmune liver disease and promote profibrogenic hepatic stellate cell activation. Hepatology 68:1172–86
    [Google Scholar]
  140. 140. 
    Croxford JL, Miyake S, Huang Y-Y, Shimamura M, Yamamura T 2006. Invariant Vα19i T cells regulate autoimmune inflammation. Nat. Immunol. 7:9987–94
    [Google Scholar]
  141. 141. 
    Illés Z, Shimamura M, Newcombe J, Oka N, Yamamura T 2004. Accumulation of Vα7.2–Jα33 invariant T cells in human autoimmune inflammatory lesions in the nervous system. Int. Immunol. 16:2223–30
    [Google Scholar]
  142. 142. 
    Abrahamsson SV, Angelini DF, Dubinsky AN, Morel E, Oh U et al. 2013. Non-myeloablative autologous haematopoietic stem cell transplantation expands regulatory cells and depletes IL-17 producing mucosal-associated invariant T cells in multiple sclerosis. Brain 136:92888–903
    [Google Scholar]
  143. 143. 
    Willing A, Leach OA, Ufer F, Attfield KE, Steinbach K et al. 2014. CD8+ MAIT cells infiltrate into the CNS and alterations in their blood frequencies correlate with IL-18 serum levels in multiple sclerosis. Eur. J. Immunol. 44:103119–28
    [Google Scholar]
  144. 144. 
    Salou M, Nicol B, Garcia A, Baron D, Michel L et al. 2016. Neuropathologic, phenotypic and functional analyses of Mucosal Associated Invariant T cells in Multiple Sclerosis. Clin. Immunol. 166–167:1–11
    [Google Scholar]
  145. 145. 
    Sundström P, Ahlmanner F, Akéus P, Sundquist M, Alsén S et al. 2015. Human mucosa-associated invariant T cells accumulate in colon adenocarcinomas but produce reduced amounts of IFN-γ. J. Immunol. 195:73472–81
    [Google Scholar]
  146. 146. 
    Zabijak L, Attencourt C, Guignant C, Chatelain D, Marcelo P et al. 2015. Increased tumor infiltration by mucosal-associated invariant T cells correlates with poor survival in colorectal cancer patients. Cancer Immunol. Immunother. 64:121601–8
    [Google Scholar]
  147. 147. 
    Ling L, Lin Y, Zheng W, Hong S, Tang X et al. 2016. Circulating and tumor-infiltrating mucosal associated invariant T (MAIT) cells in colorectal cancer patients. Sci. Rep. 6:120358
    [Google Scholar]
  148. 148. 
    Won EJ, Ju JK, Cho Y-N, Jin H-M, Park K-J et al. 2016. Clinical relevance of circulating mucosal-associated invariant T cell levels and their anti-cancer activity in patients with mucosal-associated cancer. Oncotarget 7:4676274–90
    [Google Scholar]
  149. 149. 
    Shaler CR, Tun-Abraham ME, Skaro AI, Khazaie K, Corbett AJ et al. 2017. Mucosa-associated invariant T cells infiltrate hepatic metastases in patients with colorectal carcinoma but are rendered dysfunctional within and adjacent to tumor microenvironment. Cancer Immunol. Immunother. 66:121563–75
    [Google Scholar]
  150. 150. 
    Zinkernagel RM. 1996. Immunology taught by viruses. Science 271:5246173–78
    [Google Scholar]
  151. 151. 
    Lepore M, Kalinichenko A, Colone A, Paleja B, Singhal A et al. 2014. Parallel T-cell cloning and deep sequencing of human MAIT cells reveal stable oligoclonal TCRβ repertoire. Nat. Commun. 5:3866
    [Google Scholar]
  152. 152. 
    Eberhard JM, Hartjen P, Kummer S, Schmidt RE, Bockhorn M et al. 2014. CD161+ MAIT cells are severely reduced in peripheral blood and lymph nodes of HIV-infected individuals independently of disease progression. PLOS ONE 9:11e111323
    [Google Scholar]
  153. 153. 
    Hinks TSC, Wallington JC, Williams AP, Djukanović R, Staples KJ, Wilkinson TMA 2016. Steroid-induced deficiency of mucosal-associated invariant T cells in the chronic obstructive pulmonary disease lung: implications for nontypeable Haemophilusinfluenzae infection. Am. J. Respir. Crit. Care Med. 194:101208–18
    [Google Scholar]
  154. 154. 
    Booth JS, Salerno-Goncalves R, Blanchard TG, Patil SA, Kader HA et al. 2015. Mucosal-associated invariant T cells in the human gastric mucosa and blood: role in Helicobacter pylori infection. Front. Immunol. 6:466
    [Google Scholar]
  155. 155. 
    Serriari NE, Eoche M, Lamotte L, Lion J, Fumery M et al. 2014. Innate mucosal-associated invariant T (MAIT) cells are activated in inflammatory bowel diseases. Clin. Exp. Immunol. 176:2266–74
    [Google Scholar]
  156. 156. 
    Haga K, Chiba A, Shibuya T, Osada T, Ishikawa D et al. 2016. MAIT cells are activated and accumulated in the inflamed mucosa of ulcerative colitis. J. Gastroenterol. Hepatol. 31:5965–72
    [Google Scholar]
  157. 157. 
    Hama I, Tominaga K, Yamagiwa S, Setsu T, Kimura N et al. 2019. Different distribution of mucosal-associated invariant T cells within the human cecum and colon. Cent. Eur. J. Immunol. 44:175–83
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-080719-015428
Loading
/content/journals/10.1146/annurev-immunol-080719-015428
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error