Skip to main content

Advertisement

Log in

Immune Response Evaluation Through Determination of Type 1, Type 2, and Type 17 Patterns in Patients With Epithelial Ovarian Cancer

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Innate and adaptive immune cells secrete different cytokines, which participate through distinct mechanisms in cell-mediated immunity and humoral immune responses. The aim of this study was to evaluate the immune response through analysis of type 1 (Th1), Th2, and Th17 cells in patients with epithelial ovarian cancer (EOC). Our study included 44 patients with EOC (study group) and 32 gynecological patients with no ovarian disease (control group). Fragments of ovarian tissue and blood samples were collected in both groups and aliquots of intracystic fluid and peritoneal fluid were recovered from the EOC patient group. Interleukin (IL)-2/IL-4/IL-6/IL-10/IL-17/tumor necrosis factor (TNF)-α/interferon (IFN)-γ levels were measured by cytometric bead array. Statistical analysis included chi-squared, Student t, Mann-Whitney, Kruskal-Wallis tests, and Cox regression model. Patients with EOC were associated with higher levels of TNF-α/IL-4/IL-6/IL-10 compared to the control group. Both IL-10 and TNF-α concentrations were higher in patients with stage III/IV EOC and also associated with higher levels of cancer antigen 125. Higher Th1-mediated immune response was observed when the cytoreduction was considered optimal. However, patients with EOC with unsatisfactory cytoreductive surgery and undifferentiated tumors were associated with higher concentrations of Th2 cytokines in the 4 sites studied. Higher IL-6/IL-10 and lower IFN-γ concentrations were also associated with a lower overall survival rate in patients with EOC. The EOC group presented a predominantly Th2 response and an immunosuppressant standard and had association between IL-6/IL-10/IFN-γ and prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hennessy BT, Coleman RL, Markman M. Ovarian cancer. Lancet. 2009;374(9698):1371–1382.

    Article  CAS  Google Scholar 

  2. Polverino G, Parazzini F, Stellato G, Scarfone G, Cipriani S, Bolis G. Survival and prognostic factors of women with advanced ovarian cancer and complete response after a carboplatin-paclitaxel chemotherapy. Gynecol Oncol. 2005;99(2):343–347.

    Article  CAS  Google Scholar 

  3. Yigit R, Figdor CG, Zusterzeel PL, Pots JM, Torensma R, Massuger LF. Cytokine analysis as a tool to understand tumour-host interaction in ovarian cancer. Eur J Cancer. 2011;47(12):1883–1889.

    Article  CAS  Google Scholar 

  4. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986;136(7):2348–2357.

    CAS  PubMed  Google Scholar 

  5. Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol. 2006;6(10):715–727.

    Article  CAS  Google Scholar 

  6. Kulbe H, Thompson R, Wilson JL, et al. The inflammatory cytokine tumor necrosis factor-alpha generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Res. 2007;67(2):585–592.

    Article  CAS  Google Scholar 

  7. Egberts JH, Cloosters V, Noack A, et al. Anti-tumor necrosis factor therapy inhibits pancreatic tumor growth and metastasis. Cancer Res. 2008;68(5):1443–1450.

    Article  CAS  Google Scholar 

  8. Yue FY, Dummer R, Geertsen R, et al. Interleukin-10 is a growth factor for human melanoma cells and down-regulates HLA class-I, HLA class-II and ICAM-1 molecules. Int J Cancer. 1997;71(4): 630–637.

    Article  CAS  Google Scholar 

  9. Torres MP, Ponnusamy MP, Lakshmanan I, Batra SK. Immunopathogenesis of ovarian cancer. Minerva Med. 2009;100(5): 385–400.

    CAS  PubMed  Google Scholar 

  10. Nilsson MB, Langley RR, Fidler IJ. Interleukin-6, secreted by human ovarian carcinoma cells, is a potent proangiogenic cytokine. Cancer Res. 2005;65(23):10794–10800.

    Article  CAS  Google Scholar 

  11. Nelms K, Keegan AD, Zamorano J, Ryan JJ, Paul WE. The IL-4 receptor: signaling mechanisms and biologic functions. Annu Rev Immunol. 1999;17:701–738.

    Article  CAS  Google Scholar 

  12. Kawakami K, Kawakami M, Puri RK. Overexpressed cell surface interleukin-4 receptor molecules can be successfully targeted for antitumor cytotoxin therapy. Crit Rev Immunol. 2001;21(1–3): 299–310.

    CAS  PubMed  Google Scholar 

  13. Kioi M, Takahashi S, Kawakami M, Kawakami K, Kreitman RJ, Puri RK. Expression and targeting of interleukin-4 receptor for primary and advanced ovarian cancer therapy. Cancer Res. 2005;65(18):8388–8396.

    Article  CAS  Google Scholar 

  14. Giuntoli RL 2nd, Webb TJ, Zoso A, et al. Ovarian cancer-associated ascites demonstrates altered immune environment: implications for antitumor immunity. Anticancer Res. 2009; 29(8):2875–2884.

    CAS  PubMed  Google Scholar 

  15. Zhang L, Conejo-Garcia JR, Katsaros D, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348(3):203–213.

    Article  CAS  Google Scholar 

  16. Raspollini MR, Castiglione F, Rossi Degl’innocenti D, et al. Tumour-infiltrating gamma/delta T-lymphocytes are correlated with a brief disease-free interval in advanced ovarian serous carcinoma. Ann Oncol. 2005;16(4):590–596.

    Article  CAS  Google Scholar 

  17. Ouyang W, Kolls JK, Zheng Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity. 2008;28(4):454–467.

    Article  CAS  Google Scholar 

  18. Kryczek I, Banerjee M, Cheng P, et al. Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood. 2009;114(6):1141–1149.

    Article  CAS  Google Scholar 

  19. van Nagell JR Jr, Pavlik EJ. Ovarian cancer screening. Clin Obstet Gynecol. 2012;55(1):43–51.

    Article  Google Scholar 

  20. Benedet JL, Bender H, Jones H 3rd, Ngan HY, Pecorelli S. FIGO staging classifications and clinical practice guidelines in the management of gynecologic cancers. FIGO Committee on Gynecologic Oncology. Int J Gynaecol Obstet. 2000;70(2):209–262.

    Article  CAS  Google Scholar 

  21. Rustin GJ, Timmers P, Nelstrop A, et al. Comparison of CA-125 and standard definitions of progression of ovarian cancer in the intergroup trial of cisplatin and paclitaxel versus cisplatin and cyclophosphamide. J Clin Oncol. 2006;24(1):45–51.

    Article  CAS  Google Scholar 

  22. Nowak M, Glowacka E, Szpakowski M, et al. Proinflammatory and immunosuppressive serum, ascites and cyst fluid cytokines in patients with early and advanced ovarian cancer and benign ovarian tumors. Neuro Endocrinol Lett. 2010;31(3):375–383.

    CAS  PubMed  Google Scholar 

  23. Kavsak PA, Lee A, Hirte H, Young E, Gauldie J. Cytokine elevations in acute coronary syndrome and ovarian cancer: a mechanism for the up-regulation of the acute phase proteins in these different disease etiologies. Clin Biochem. 2008;41(7–8):607–610.

    Article  CAS  Google Scholar 

  24. Darai E, Detchev R, Hugol D, Quang NT. Serum and cyst fluid levels of interleukin (IL) -6, IL-8 and tumour necrosis factor-alpha in women with endometriomas and benign and malignant cystic ovarian tumours. Hum Reprod. 2003;18(8):1681–1685.

    Article  CAS  Google Scholar 

  25. Hagemann T, Wilson J, Burke F, et al. Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J Immunol. 2006;176(8):5023–5032.

    Article  CAS  Google Scholar 

  26. Wang T, Niu G, Kortylewski M, et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med. 2004;10(1):48–54.

    Article  Google Scholar 

  27. Carr TM, Adair SJ, Fink MJ, Hogan KT. Immunological profiling of a panel of human ovarian cancer cell lines. Cancer Immunol Immunother. 2008;57(1):31–42.

    Article  CAS  Google Scholar 

  28. Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell. 2005;7(3):211–217.

    Article  CAS  Google Scholar 

  29. Schuurhuis DH, van Montfoort N, Ioan-Facsinay A, et al. Immune complex-loaded dendritic cells are superior to soluble immune complexes as antitumor vaccine. J Immunol. 2006; 176(8):4573–4580.

    Article  CAS  Google Scholar 

  30. Gavalas NG, Karadimou A, Dimopoulos MA, Bamias A. Immune response in ovarian cancer: how is the immune system involved in prognosis and therapy: potential for treatment utilization. Clin Dev Immunol. 2010;2010:791603.

    Article  Google Scholar 

  31. Schmeler KM, Vadhan-Raj S, Ramirez PT, et al. A phase II study of GM-CSF and rIFN-gamma1b plus carboplatin for the treatment of recurrent, platinum-sensitive ovarian, fallopian tube and primary peritoneal cancer. Gynecol Oncol. 2009;113(2):210–215.

    Article  CAS  Google Scholar 

  32. Scambia G, Testa U, Benedetti Panici P, et al. Prognostic significance of interleukin 6 serum levels in patients with ovarian cancer. Br J Cancer. 1995;71(2):354–356.

    Article  CAS  Google Scholar 

  33. Tempfer C, Zeisler H, Sliutz G, Haeusler G, Hanzal E, Kainz C. Serum evaluation of interleukin 6 in ovarian cancer patients. Gynecol Oncol. 1997;66(1):27–30.

    Article  CAS  Google Scholar 

  34. Offner FA, Obrist P, Stadlmann S, et al. IL-6 secretion by human peritoneal mesothelial and ovarian cancer cells. Cytokine. 1995; 7(6):542–547.

    Article  CAS  Google Scholar 

  35. Duan Z, Foster R, Bell DA, et al. Signal transducers and activators of transcription 3 pathway activation in drug-resistant ovarian cancer. Clin Cancer Res. 2006;12(17):5055–5063.

    Article  CAS  Google Scholar 

  36. Obata NH, Tamakoshi K, Shibata K, Kikkawa F, Tomoda Y. Effects of interleukin-6 on in vitro cell attachment, migration and invasion of human ovarian carcinoma. Anticancer Res. 1997; 17(1A):337–342.

  37. Hagenbaugh A, Sharma S, Dubinett SM, et al. Altered immune responses in interleukin 10 transgenic mice. J Exp Med. 1997; 185(12):2101–2110.

    Article  CAS  Google Scholar 

  38. Mahipal A, Terai M, Berd D, et al. Tumor-derived interleukin-10 as a prognostic factor in stage III patients undergoing adjuvant treatment with an autologous melanoma cell vaccine. Cancer Immunol Immunother. 2011;60(7):1039–1045.

    Article  CAS  Google Scholar 

  39. Terai M, Tamura Y, Alexeev V, et al. Human interleukin 10 receptor 1/IgG1-Fc fusion proteins: immunoadhesins for human IL-10 with therapeutic potential. Cancer Immunol Immunother. 2009;58(8):1307–1317.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnaldo Lopes da Silva-Filho MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cândido, E.B., Silva, L.M., Carvalho, A.T. et al. Immune Response Evaluation Through Determination of Type 1, Type 2, and Type 17 Patterns in Patients With Epithelial Ovarian Cancer. Reprod. Sci. 20, 828–837 (2013). https://doi.org/10.1177/1933719112466299

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719112466299

Keywords

Navigation