Skip to main content
Log in

Tumor Necrosis Factor/Tumor Necrosis Factor Receptor Family Members That Positively Regulate Immunity

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

The interactions between members of the tumor necrosis factor (TNF) family and their specific receptors (TNFRs) are influential in controlling cell division, life, and death. Recent evidence suggests that these interactions control the functionality and longevity of many types of cells involved in immune responses. In particular, it has become evident that certain interactions support the clonal expansion and survival of T-cells, B-cells, and dendritic cells and thus are essential for establishing a robust immune response. This review describes select TNF/TNFR family members that principally support activation and survival and prevent excessive cell death of T-cells (OX40L/OX40, 4-1BBL/4-1BB, CD30L/CD30, LIGHT/HVEM, CD70/CD27, and GITRL/GITR), B-cells (BAFF/BAFFR), and dendritic cells (RANKL/RANK). Expression of these ligands and receptors on the cell surface is highly regulated, and communication via them occurs during contact between T-cells and dendritic cells and between T-cells and B-cells.The functional dynamic between these TNF/TNFR members is slowly being unraveled, including whether these molecules act together or sequentially or control different type of immune responses. This review summarizes aspects of these TNF/TNFR interactions that are potentially important to immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Muppidi JR, Tschopp J, Siegel RM. Life and death decisions: secondary complexes and lipid rafts in TNF receptor family signal transduction. Immunity. 2004;21:461–465.

    Article  CAS  PubMed  Google Scholar 

  2. Croft M. Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nat Rev Immunol 2003;3:609–620.

    Article  CAS  PubMed  Google Scholar 

  3. Calderhead DM, Buhlmann JE, van den Eertwegh AJ, Claassen E, Noelle RJ, Fell HP. Cloning of mouse Ox40: a T cell activation marker that may mediate T-B cell interactions. J Immunol. 1993; 151:5261–5271.

    CAS  PubMed  Google Scholar 

  4. Ohshima Y, Tanaka Y, Tozawa H, Takahashi Y, Maliszewski C, Delespesse G. Expression and function of OX40 ligand on human dendritic cells. J Immunol. 1997;159:3838–3848.

    CAS  PubMed  Google Scholar 

  5. Murata K, Ishii N, Takano H, et al. Impairment of antigen-presenting cell function in mice lacking expression of OX40 ligand. J Exp Med. 2000;191:365–374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Imura A, Hori T, Imada K, et al. The human OX40/gp34 system directly mediates adhesion of activated T cells to vascular endothelial cells. J Exp Med. 1996;183:2185–2195.

    Article  CAS  PubMed  Google Scholar 

  7. Kashiwakura J, Yokoi H, Saito H, Okayama Y T cell proliferation by direct cross-talk between OX40 ligand on human mast cells and OX40 on human T cells: comparison of gene expression profiles between human tonsillar and lung-cultured mast cells. J Immunol. 2004;173:5247–5257.

    Article  CAS  PubMed  Google Scholar 

  8. Zingoni A, Sornasse T, Cocks BG, Tanaka Y, Santoni A, Lanier LL. Cross-talk between activated human NK cells and CD4+ T cells via OX40-OX40 ligand interactions. J Immunol. 2004;173:3716–3724.

    Article  CAS  PubMed  Google Scholar 

  9. Baum PR, Gayle RB 3rd, Ramsdell F, et al. Molecular characterization of murine and human OX40/OX40 ligand systems: identification of a human OX40 ligand as the HTLV-1-regulated protein gp34. EMBO J. 1994;13:3992–4001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim MY, Gaspal FM, Wiggett HE, et al. CD4(+)CD3(-) accessory cells costimulate primed CD4 T cells through OX40 and CD30 at sites where T cells collaborate with B cells. Immunity. 2003;18:643–654.

    Article  CAS  PubMed  Google Scholar 

  11. Al-Shamkhani A, Birkeland ML, Puklavec M, Brown MH, James W, Barclay AN. OX40 is differentially expressed on activated rat and mouse T cells and is the sole receptor for the OX40 ligand. Eur J Immunol. 1996;26:1695–1699.

    Article  CAS  PubMed  Google Scholar 

  12. Gramaglia I, Weinberg AD, Lemon M, Croft M. Ox-40 ligand: a potent costimulatory molecule for sustaining primary CD4 T cell responses. J Immunol. 1998;161:6510–6517.

    CAS  PubMed  Google Scholar 

  13. Rogers PR, Song J, Gramaglia I, Killeen N, Croft M. OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4T cells. Immunity. 2001;15:445–455.

    Article  CAS  PubMed  Google Scholar 

  14. Stuber E, Neurath M, Calderhead D, Fell HP, Strober W. Cross-linking of OX40 ligand, a member of the TNF/NGF cytokine family, induces proliferation and differentiation in murine splenic B cells. Immunity. 1995;2:507–521.

    Article  CAS  PubMed  Google Scholar 

  15. Weinberg AD, Wegmann KW, Funatake C, Whitham RH. Blocking OX-40/OX-40 ligand interaction in vitro and in vivo leads to decreased T cell function and amelioration of experimental allergic encephalomyelitis. J Immunol. 1999;162:1818–1826.

    CAS  PubMed  Google Scholar 

  16. Higgins LM, McDonald SA, Whittle N, Crockett N, Shields JG, MacDonald TT. Regulation of T cell activation in vitro and in vivo by targeting the OX40-OX40 ligand interaction: amelioration of ongoing inflammatory bowel disease with an OX40-IgG fusion protein, but not with an OX40 ligand-IgG fusion protein. J Immunol. 1999;162:486–493.

    CAS  PubMed  Google Scholar 

  17. Akiba H, Miyahira Y, Atsuta M, et al. Critical contribution of OX40 ligand to T helper cell type 2 differentiation in experimental leishmaniasis. J Exp Med. 2000;191:375–380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Salek-Ardakani S, Song J, Halteman BS, et al. OX40 (CD134) controls memory T helper 2 cells that drive lung inflammation. J Exp Med. 2003;198:315–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pippig SD, Pena-Rossi C, Long J, et al. Robust B cell immunity but impaired T cell proliferation in the absence of CD134 (OX40). J Immunol. 1999;163:6520–6529.

    CAS  PubMed  Google Scholar 

  20. Kopf M, Ruedl C, Schmitz N, et al. OX40-deficient mice are defective in Th cell proliferation but are competent in generating B cell and CTL Responses after virus infection. Immunity. 1999;11:699–708.

    Article  CAS  PubMed  Google Scholar 

  21. Chen AI, McAdam AJ, Buhlmann JE, et al. Ox40-ligand has a critical costimulatory role in dendritic cell:T cell interactions. Immunity.. 1999;11:689–698.

    Article  CAS  PubMed  Google Scholar 

  22. Gramaglia I, Jember A, Pippig SD, Weinberg AD, Killeen N, Croft M. The OX40 costimulatory receptor determines the development of CD4 memory by regulating primary clonal expansion. J Immunol. 2000;165:3043–3050.

    Article  CAS  PubMed  Google Scholar 

  23. Dawicki W, Bertram EM, Sharpe AH, Watts TH. 4-1BB and OX40 act independently to facilitate robust CD8 and CD4 recall responses. J Immunol. 2004;173:5944–5951.

    Article  CAS  PubMed  Google Scholar 

  24. Song J, Salek-Ardakani S, Rogers PR, Cheng M, van Parijs L, Croft M. The costimulation-regulated duration of PKB activation controls T cell longevity. Nat Immunol. 2004;5:150–158.

    Article  CAS  PubMed  Google Scholar 

  25. Song J, So T, Cheng M, Tang X, Croft M. Sustained survivin expression from OX40 costimulatory signals drives T cell clonal expansion. Immunity. 2005;22:621–631.

    Article  CAS  PubMed  Google Scholar 

  26. Weinberg AD, Bourdette DN, Sullivan TJ, et al. Selective depletion of myelin-reactive T cells with the anti-OX-40 antibody ameliorates autoimmune encephalomyelitis. Nat Med. 1996;2:183–189.

    Article  CAS  PubMed  Google Scholar 

  27. Yoshioka T, Nakajima A, Akiba H, et al. Contribution of OX40/ OX40 ligand interaction to the pathogenesis of rheumatoid arthritis. Eur J Immunol. 2000;30:2815–2823.

    Article  CAS  PubMed  Google Scholar 

  28. Jember AG, Zuberi R, Liu FT, Croft M. Development of allergic inflammation in a murine model of asthma is dependent on the costimulatory receptor OX40. J Exp Med. 2001;193:387–392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ekkens MJ, Liu Z, Liu Q, et al. The role of OX40 ligand interactions in the development of the Th2 response to the gastrointestinal nematode parasite Heligmosomoides polygyrus. J Immunol. 2003;170:384–393.

    Article  CAS  PubMed  Google Scholar 

  30. Linton PJ, Bautista B, Biederman E, et al. Costimulation via OX40L expressed by B cells is sufficient to determine the extent of primary CD4 cell expansion and Th2 cytokine secretion in vivo. J Exp Med. 2003;197:875–883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sugamura K, Ishii N, Weinberg AD. Therapeutic targeting of the effector T-cell co-stimulatory molecule OX40. Nat Rev Immunol. 2004;4:420–431.

    Article  CAS  PubMed  Google Scholar 

  32. Flynn S, Toellner KM, Raykundalia C, Goodall M, Lane P. CD4 T cell cytokine differentiation: the B cell activation molecule, OX40 ligand, instructs CD4 T cells to express interleukin 4 and upregu-lates expression of the chemokine receptor, Blr-1. J Exp Med. 1998; 188:297–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ohshima Y, Yang LP, Uchiyama T, et al. OX40 costimulation enhances interleukin-4 (IL-4) expression at priming and promotes the differentiation of naive human CD4(+) T cells into high IL-4-producing effectors. Blood. 1998;92:3338–3345.

    CAS  PubMed  Google Scholar 

  34. Ito T, Amakawa R, Inaba M, et al. Plasmacytoid dendritic cells regulate Th cell responses through OX40 ligand and type I IFNs. J Immunol. 2004;172:4253–4259.

    Article  CAS  PubMed  Google Scholar 

  35. Morita R, Uchiyama T, Hori T Nitric oxide inhibits IFN-alpha production of human plasmacytoid dendritic cells partly via a guano-sine 3′,5′-cyclic monophosphate-dependent pathway. J Immunol. 2005;175:806–812.

    Article  CAS  PubMed  Google Scholar 

  36. Bansal-Pakala P, Halteman BS, Cheng MH, Croft M. Costimulation of CD8 T cell responses by OX40. J Immunol. 2004;172:4821–4825.

    Article  CAS  PubMed  Google Scholar 

  37. Walker LS, Gulbranson-Judge A, Flynn S, et al. Compromised OX40 function in CD28-deficient mice is linked with failure to develop CXC chemokine receptor 5-positive CD4 cells and germinal centers. J Exp Med. 1999;190:1115–1122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fillatreau S, Gray D. T cell accumulation in B cell follicles is regulated by dendritic cells and is independent of B cell activation. J Exp Med. 2003;197:195–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang Q, Chen Y, Ge Y, et al. Characterization and functional study of five novel monoclonal antibodies against human OX40L highlight reverse signalling: enhancement of IgG production of B cells and promotion of maturation of DCs. Tissue Antigens. 2004;64:566–574.

    Article  CAS  PubMed  Google Scholar 

  40. Kato H, Kojima H, Ishii N, et al. Essential role of OX40L on B cells in persistent alloantibody production following repeated alloim-munizations. J Clin Immunol. 2004;24:237–248.

    Article  CAS  PubMed  Google Scholar 

  41. Wang X, Ria M, Kelmenson PM, et al. Positional identification of TNFSF4, encoding OX40 ligand, as a gene that influences atherosclerosis susceptibility. Nat Genet. 2005;37:365–372.

    Article  CAS  PubMed  Google Scholar 

  42. Valzasina B, Guiducci C, Dislich H, Killeen N, Weinberg AD, Colombo MP. Triggering of OX40 (CD134) on CD4(+)CD25+ T cells blocks their inhibitory activity: a novel regulatory role for OX40 and its comparison with GITR. Blood. 2005;105:2845–2851.

    Article  CAS  PubMed  Google Scholar 

  43. Goodwin RG, Din WS, Davis-Smith T, et al. Molecular cloning of a ligand for the inducible T cell gene 4-1BB: a member of an emerging family of cytokines with homology to tumor necrosis factor. EurJ Immunol. 1993;23:2631–2641.

    Article  CAS  Google Scholar 

  44. Pollok KE, Kim YJ, Hurtado J, Zhou Z, Kim KK, Kwon BS. 4-1BB T-cell antigen binds to mature B cells and macrophages, and cos-timulates anti-mu-primed splenic B cells. Eur J Immunol. 1994;24:367–374.

    Article  CAS  PubMed  Google Scholar 

  45. Diehl L, van Mierlo GJ, den Boer AT, et al. In vivo triggering through 4-1BB enables Th-independent priming of CTL in the presence of an intact CD28 costimulatory pathway. J Immunol. 2002;168:3755–3762.

    Article  CAS  PubMed  Google Scholar 

  46. Futagawa T, Akiba H, Kodama T, et al. Expression and function of 4-1BB and 4-1BB ligand on murine dendritic cells. Int Immunol. 2002;14:275–286.

    Article  CAS  PubMed  Google Scholar 

  47. Kwon BS, Weissman SM. cDNA sequences of two inducible T-cell genes. Proc NatlAcad Sci USA. 1989;86:1963–1967.

    Article  CAS  Google Scholar 

  48. Wilcox RA, Tamada K, Strome SE, Chen L. Signaling through NK cell-associated CD137 promotes both helper function for CD8+ cytolytic T cells and responsiveness to IL-2 but not cytolytic activity. J Immunol. 2002;169:4230–4236.

    Article  CAS  PubMed  Google Scholar 

  49. Wilcox RA, Chapoval AI, Gorski KS, et al. Cutting edge: expression of functional CD137 receptor by dendritic cells. J Immunol. 2002;168:4262–4267.

    Article  CAS  PubMed  Google Scholar 

  50. Pauly S, Broll K, Wittmann M, Giegerich G, Schwarz H. CD137 is expressed by follicular dendritic cells and costimulates B lymphocyte activation in germinal centers. J Leukoc Biol. 2002;72:35–42.

    CAS  PubMed  Google Scholar 

  51. Kienzle G, von Kempis J. CD137 (ILA/4-1BB), expressed by primary human monocytes, induces monocyte activation and apoptosis of B lymphocytes. Int Immunol. 2000;12:73–82.

    Article  CAS  PubMed  Google Scholar 

  52. Lee SC, Ju SA, Pack HN, et al. 4-1BB (CD137) is required for rapid clearance of Listeria monocytogenes infection. Infect Immun. 2005; 73:5144–5151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Saoulli K, Lee SY, Cannons JL, et al. CD28-independent, TRAF2- dependent costimulation of resting T cells by 4-1BB ligand. J Exp Med. 1998;187:1849–1862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cannons JL, Lau P, Ghumman B, et al. 4-1BB ligand induces cell division, sustains survival, and enhances effector function of CD4 and CD8 T cells with similar efficacy. J Immunol. 2001;167:1313–1324.

    Article  CAS  PubMed  Google Scholar 

  55. Chu NR, DeBenedette MA, Stiernholm BJ, Barber BH, Watts TH. Role of IL-12 and 4-1BB ligand in cytokine production by CD28+ and CD28-T cells. J Immunol. 1997;158:3081–3089.

    CAS  PubMed  Google Scholar 

  56. Cooper D, Bansal-Pakala P, Croft M. 4-1BB (CD137) controls the clonal expansion and survival of CD8 T cells in vivo but does not contribute to the development of cytotoxicity. Eur J Immunol. 2002;32:521–529.

    Article  CAS  PubMed  Google Scholar 

  57. Gramaglia I, Cooper D, Miner KT, Kwon BS, Croft M. Co-stimulation of antigen-specific CD4 T cells by 4-1BB ligand. Eur J Immunol. 2000;30:392–402.

    Article  CAS  PubMed  Google Scholar 

  58. Kwon BS, Hurtado JC, Lee ZH, et al. Immune responses in 4-1BB (CD137)-deficient mice. J Immunol. 2002;168:5483–5490.

    Article  CAS  PubMed  Google Scholar 

  59. DeBenedette MA, Wen T, Bachmann MF, et al. Analysis of 4-1BB ligand (4-1BBL)-deficient mice and of mice lacking both 4-1BBL and CD28 reveals a role for 4-1BBL in skin allograft rejection and in the cytotoxic T cell response to influenza virus. J Immunol. 1999; 163:4833–4841.

    CAS  PubMed  Google Scholar 

  60. Shedlock DJ, Whitmire JK, Tan J, MacDonald AS, Ahmed R, Shen H. Role of CD4 T cell help and costimulation in CD8 T cell responses during Listeria monocytogenes infection. J Immunol. 2003;170:2053–2063.

    Article  CAS  PubMed  Google Scholar 

  61. Tan JT, Whitmire JK, Ahmed R, Pearson TC, Larsen CP 4-1BB ligand, a member of the TNF family, is important for the generation of antiviral CD8 T cell responses. J Immunol. 1999;163:4859–4868.

    CAS  PubMed  Google Scholar 

  62. Bertram EM, Lau P, Watts TH. Temporal segregation of 4-1BB versus CD28-mediated costimulation: 4-1BB ligand influences T cell numbers late in the primary response and regulates the size of the T cell memory response following influenza infection. J Immunol. 2002;168:3777–3785.

    Article  CAS  PubMed  Google Scholar 

  63. Bertram EM, Dawicki W, Sedgmen B, Bramson JL, Lynch DH, Watts TH. A switch in costimulation from CD28 to 4-1BB during primary versus secondary CD8 T cell response to influenza in vivo. J Immunol. 2004;172:981–988.

    Article  CAS  PubMed  Google Scholar 

  64. Blazar BR, Kwon BS, Panoskaltsis-Mortari A, Kwak KB, Peschon JJ, Taylor PA. Ligation of 4-1BB (CDw137) regulates graft-versus-host disease, graft-versus-leukemia, and graft rejection in allo-geneic bone marrow transplant recipients. J Immunol. 2001;166:3174–3183.

    Article  CAS  PubMed  Google Scholar 

  65. Lee SW, Vella AT, Kwon BS, Croft M. Enhanced CD4 T cell responsiveness in the absence of 4-1BB. J Immunol. 2005;174:6803–6808.

    Article  CAS  PubMed  Google Scholar 

  66. Sun Y, Lin X, Chen HM, et al. Administration of agonistic anti-4-1BB monoclonal antibody leads to the amelioration of experimental autoimmune encephalomyelitis. J Immunol. 2002;168:1457–1465.

    Article  CAS  PubMed  Google Scholar 

  67. Sun Y, Chen HM, Subudhi SK, et al. Costimulatory molecule-targeted antibody therapy of a spontaneous autoimmune disease. Nat Med. 2002;8:1405–1413.

    Article  CAS  PubMed  Google Scholar 

  68. Foell J, Strahotin S, O’Neil SP, et al. CD137 costimulatory T cell receptor engagement reverses acute disease in lupus-prone NZB x NZW F1 mice. J Clin Invest. 2003;111:1505–1518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Seo SK, Choi JH, Kim YH, et al. 4-1BB-mediated immunotherapy of rheumatoid arthritis. Nat Med. 2004;10:1088–1094.

    Article  CAS  PubMed  Google Scholar 

  70. Nishimoto H, Lee SW, Hong H, et al. Costimulation of mast cells by 4-1BB, a member of the tumor necrosis factor receptor super-family, with the high-affinity IgE receptor. Blood. 2005;106:4241–4248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wiley SR, Goodwin RG, Smith CA. Reverse signaling via CD30 ligand. J Immunol. 1996;157:3635–3639.

    CAS  PubMed  Google Scholar 

  72. Shanebeck KD, Maliszewski CR, Kennedy MK, et al. Regulation of murine B cell growth and differentiation by CD30 ligand. Eur J Immunol. 1995;25:2147–2153.

    Article  CAS  PubMed  Google Scholar 

  73. Ellis TM, Simms PE, Slivnick DJ, Jack HM, Fisher RI. CD30 is a signal-transducing molecule that defines a subset of human acti- vated CD45RO+ T cells. J Immunol. 1993;151:2380–2389.

    CAS  PubMed  Google Scholar 

  74. Gilfillan MC, Noel PJ, Podack ER, Reiner SL, Thompson CB. Expression of the costimulatory receptor CD30 is regulated by both CD28 and cytokines. J Immunol. 1998;160:2180–2187.

    CAS  PubMed  Google Scholar 

  75. Matsumoto K, Terakawa M, Miura K, Fukuda S, Nakajima T, Saito H. Extremely rapid and intense induction of apoptosis in human eosinophils by anti-CD30 antibody treatment in vitro. J Immunol. 2004;172:2186–2193.

    Article  CAS  PubMed  Google Scholar 

  76. Horie R, Watanabe T. CD30: expression and function in health and disease. Semin Immunol. 1998;10:457–470.

    Article  CAS  PubMed  Google Scholar 

  77. Bowen MA, Lee RK, Miragliotta G, Nam SY, Podack ER. Struc- ture and expression of murine CD30 and its role in cytokine pro- duction. J Immunol. 1996;156:442–449.

    CAS  PubMed  Google Scholar 

  78. Alzona M, Jack HM, Fisher RI, Ellis TM. CD30 defines a subset of activated human T cells that produce IFN-gamma and IL-5 and exhibit enhanced B cell helper activity. J Immunol. 1994;153:2861–2867.

    CAS  PubMed  Google Scholar 

  79. Nakamura T, Lee RK, Nam SY, et al. Reciprocal regulation of CD30 expression on CD4+ T cells by IL-4 and IFN-gamma. J Immunol. 1997;158:2090–2098.

    CAS  PubMed  Google Scholar 

  80. Vukmanovic SM, Vyas B, Gorak SP, Noble A, Kemeny DM. Human Tc1 andTc2/Tc0 CD8T-cell clones display distinct cell surface and functional phenotypes. Blood. 2000;95:231–240.

    Google Scholar 

  81. Amakawa R, Hakem A, Kundig TM, et al. Impaired negative selection of T cells in Hodgkin’s disease antigen CD30-deficient mice. Cell. 1996;84:551–562.

    Article  CAS  PubMed  Google Scholar 

  82. Chiarle R, Podda A, Prolla G, Podack ER, Thorbecke GJ,Inghirami G. CD30 overexpression enhances negative selection in the thymus and mediates programmed cell death via a Bcl-2-sensitive pathway. J Immunol. 1999;163:194–205.

    CAS  PubMed  Google Scholar 

  83. De Young AL, Duramad O, Winoto A. The TNF receptor family member CD30 is not essential for negative selection. J Immunol. 2000;165:6170–6173.

    Article  Google Scholar 

  84. Podack ER, Strbo N, Sotosec V, Muta H. CD30-governor of memory T cells? Ann N YAcad Sci 2002;975:101–113.

    Article  CAS  Google Scholar 

  85. Florido M, Borges M, Yagita H, Appelberg R. Contribution of CD30/CD153 but not of CD27/CD70, CD134/OX40L, or CD137/ 4-1BBL to the optimal induction of protective immunity to Mycobacterium avium. J Leukoc Biol. 2004;76:1039–1046.

    Article  CAS  PubMed  Google Scholar 

  86. Blazar BR, Levy RB, Mak TW, et al. CD30/CD30 ligand (CD153) interaction regulates CD4+ T cell-mediated graft-versus-host disease. J Immunol. 2004;173:2933–2941.

    Article  CAS  PubMed  Google Scholar 

  87. Gaspal FM, Kim MY, McConnell FM, Raykundalia C, Bekiaris V, Lane PJ. Mice deficient in OX40 and CD30 signals lack memory antibody responses because of deficient CD4 T cell memory. J Immunol. 2005;174:3891–3896.

    Article  CAS  PubMed  Google Scholar 

  88. Muta H, Boise LH, Fang L, Podack ER. CD30 signals integrate expression of cytotoxic effector molecules, lymphocyte trafficking signals, and signals for proliferation and apoptosis. J Immunol. 2000;165:5105–5111.

    Article  CAS  PubMed  Google Scholar 

  89. Dai Z, Nasr IW, Reel M, et al. Impaired recall of CD8 memory T cells in immunologically privileged tissue. J Immunol. 2005;174:1165–1170.

    Article  CAS  PubMed  Google Scholar 

  90. Dai Z, Li Q, Wang Y, et al. CD4+CD25+ regulatory T cells suppress allograft rejection mediated by memory CD8+ T cells via a CD30-dependent mechanism. J Clin Invest. 2004;113:310–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hansen HP, Kisseleva T, Kobarg J, Horn-Lohrens O, Havsteen B, Lemke H. A zinc metalloproteinase is responsible for the release of CD30 on human tumor cell lines. Int J Cancer. 1995;63:750–756.

    Article  CAS  PubMed  Google Scholar 

  92. Al-Shamkhani A. The role of CD30 in the pathogenesis of haematopoietic malignancies. Curr Opin Pharmacol. 2004;4:355–359.

    Article  CAS  PubMed  Google Scholar 

  93. Nagata S, Ise T, Onda M, et al. Cell membrane-specific epitopes on CD30: potentially superior targets for immunotherapy. Proc Natl Acad Sci U S A. 2005;102:7946–7951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mauri DN, Ebner R, Montgomery RI, et al. LIGHT, a new member of the TNF superfamily, and lymphotoxin alpha are ligands for herpesvirus entry mediator. Immunity. 1998;8:21–30.

    Article  CAS  PubMed  Google Scholar 

  95. Granger SW, Rickert S. LIGHT-HVEM signaling and the regulation of T cell-mediated immunity. Cytokine Growth Factor Rev. 2003;14:289–296.

    Article  CAS  PubMed  Google Scholar 

  96. Tamada K, Shimozaki K, Chapoval AI, et al. LIGHT, a TNF-like molecule, costimulates T cell proliferation and is required for dendritic cell-mediated allogeneic T cell response. J Immunol. 2000; 164:4105–4110.

    Article  CAS  PubMed  Google Scholar 

  97. Montgomery RI, Warner MS, Lum BJ, Spear PG. Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/ NGF receptor family. Cell. 1996;87:427–436.

    Article  CAS  PubMed  Google Scholar 

  98. Kwon BS, Tan KB, Ni J, et al. A newly identified member of the tumor necrosis factor receptor superfamily with a wide tissue distribution and involvement in lymphocyte activation. J Biol Chem. 1997;272:14272–14276.

    Article  CAS  PubMed  Google Scholar 

  99. Harrop JA, Reddy M, Dede K, et al. Antibodies to TR2 (herpesvirus entry mediator), a new member of the TNF receptor superfamily, block T cell proliferation, expression of activation markers, and production of cytokines. J Immunol. 1998;161:1786–1794.

    CAS  PubMed  Google Scholar 

  100. Morel Y, Schiano de Colella JM, Harrop J, et al. Reciprocal expression of the TNF family receptor herpes virus entry mediator and its ligand LIGHT on activated T cells: LIGHT down-regulates its own receptor. J Immunol. 2000;165:4397–4404.

    Article  CAS  PubMed  Google Scholar 

  101. Zhai Y, Guo R, Hsu TL, et al. LIGHT, a novel ligand for lymphotoxin beta receptor and TR2/HVEM induces apoptosis and suppresses in vivo tumor formation via gene transfer. J Clin Invest. 1998;102:1142–1151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Schneider K, Potter KG, Ware CF. Lymphotoxin and LIGHT signaling pathways and target genes. Immunol Rev. 2004;202:49–66.

    Article  CAS  PubMed  Google Scholar 

  103. Gommerman JL, Browning JL. Lymphotoxin/light, lymphoid microenvironments and autoimmune disease. Nat Rev Immunol. 2003;3:642–655.

    Article  CAS  PubMed  Google Scholar 

  104. Scheu S, Alferink J, Potzel T, Barchet W, Kalinke U, Pfeffer K. Targeted disruption of LIGHT causes defects in costimulatory T cell activation and reveals cooperation with lymphotoxin beta in mesenteric lymph node genesis. J Exp Med. 2002;195:1613–1624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tamada K, Ni J, Zhu G, et al. Cutting edge: selective impairment of CD8+ T cell function in mice lacking the TNF superfamily member LIGHT. J Immunol. 2002;168:4832–4835.

    Article  CAS  PubMed  Google Scholar 

  106. Wang Y, Subudhi SK, Anders RA, et al. The role of herpesvirus entry mediator as a negative regulator of T cell-mediated responses. J Clin Invest. 2005;115:711–717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tamada K, Shimozaki K, Chapoval AI, et al. Modulation of T-cell-mediated immunity in tumor and graft-versus-host disease models through the LIGHT co-stimulatory pathway. Nat Med. 2000;6:283–289.

    Article  CAS  PubMed  Google Scholar 

  108. Yu P, Lee Y, Liu W, et al. Priming of naive T cells inside tumors leads to eradication of established tumors. Nat Immunol. 2004;5:141–149.

    Article  CAS  PubMed  Google Scholar 

  109. Wang J, Anders RA, Wang Y, et al. The critical role of LIGHT in promoting intestinal inflammation and Crohn’s disease. J Immunol. 2005;174:8173–8182.

    Article  CAS  PubMed  Google Scholar 

  110. Wang J, Lo JC, Foster A, et al. The regulation of T cell homeostasis and autoimmunity by T cell-derived LIGHT. J Clin Invest. 2001; 108:1771–1780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Shaikh RB, Santee S, Granger SW, et al. Constitutive expression of LIGHT on T cells leads to lymphocyte activation, inflammation, and tissue destruction. J Immunol. 2001;167:6330–6337.

    Article  CAS  PubMed  Google Scholar 

  112. Sedy JR, Gavrieli M, Potter KG, et al. B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nat Immunol. 2005;6:90–98.

    Article  CAS  PubMed  Google Scholar 

  113. Gonzalez LC, Loyet KM, Calemine-Fenaux J, et al. A coreceptor interaction between the CD28 and TNF receptor family members B and T lymphocyte attenuator and herpesvirus entry mediator. Proc Natl Acad Sci USA. 2005;102:1116–1121.

    Article  CAS  PubMed  Google Scholar 

  114. Croft M. The evolving crosstalk between co-stimulatory and co-inhibitory receptors: HVEM-BTLA. Trends Immunol. 2005;26:292–294.

    Article  CAS  PubMed  Google Scholar 

  115. Hintzen RQ, Lens SM, Beckmann MP, Goodwin RG, Lynch D, van Lier RA. Characterization of the human CD27 ligand, a novel member of the TNF gene family. J Immunol. 1994;152:1762–1773.

    CAS  PubMed  Google Scholar 

  116. Lens SM, de Jong R, Hooibrink B, et al. Phenotype and function of human B cells expressing CD70 (CD27 ligand). Eur J Immunol. 1996;26:2964–2971.

    Article  CAS  PubMed  Google Scholar 

  117. Tesselaar K, Xiao Y, Arens R, et al. Expression of the murine CD27 ligand CD70 in vitro and in vivo. J Immunol. 2003;170:33–40.

    Article  CAS  PubMed  Google Scholar 

  118. Tesselaar K, Gravestein LA, van Schijndel GM, Borst J, van Lier RA. Characterization of murine CD70, the ligand of the TNF receptor family member CD27. J Immunol. 1997;159:4959–4965.

    CAS  PubMed  Google Scholar 

  119. Lens SM, Baars PA, Hooibrink B, van Oers MH, van Lier RA. Antigen-presenting cell-derived signals determine expression levels of CD70 on primed T cells. Immunology. 1997;90:38–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Borst J, Sluyser C, De Vries E, Klein H, Melief CJ, Van Lier RA. Alternative molecular form of human T cell-specific antigen CD27 expressed upon T cell activation. Eur J Immunol. 1989;19:357–364.

    Article  CAS  PubMed  Google Scholar 

  121. de Jong R, Loenen WA, Brouwer M, et al. Regulation of expression of CD27, a T cell-specific member of a novel family of membrane receptors. J Immunol. 1991;146:2488–2494.

    PubMed  Google Scholar 

  122. Gravestein LA, Blom B, Nolten LA, et al. Cloning and expression of murine CD27: comparison with 4-1BB, another lymphocyte- specific member of the nerve growth factor receptor family. Eur J Immunol. 1993;23:943–950.

    Article  CAS  PubMed  Google Scholar 

  123. Wiesmann A, Phillips RL, Mojica M, et al. Expression of CD27 on murine hematopoietic stem and progenitor cells. Immunity. 2000; 12:193–199.

    Article  CAS  PubMed  Google Scholar 

  124. Nolte MA, Arens R, van Os R, et al. Immune activation modulates hematopoiesis through interactions between CD27 and CD70. Nat Immunol. 2005;6:412–418.

    Article  CAS  PubMed  Google Scholar 

  125. Bowman MR, Crimmins MA, Yetz-Aldape J, Kriz R, Kelleher K, Herrmann S. The cloning of CD70 and its identification as the ligand for CD27. J Immunol. 1994;152:1756–1761.

    CAS  PubMed  Google Scholar 

  126. Hintzen RQ, Lens SM, Lammers K, Kuiper H, Beckmann MP, van Lier RA. Engagement of CD27 with its ligand CD70 provides a second signal for T cell activation. J Immunol. 1995;154:2612–2623.

    CAS  PubMed  Google Scholar 

  127. Stuhler G, Zobywalski A, Grunebach F, et al. Immune regulatory loops determine productive interactions within human T lymphocyte-dendritic cell clusters. Proc Natl Acad Sci USA. 1999;96:1532–1535.

    Article  CAS  PubMed  Google Scholar 

  128. Hamann D, Kostense S, Wolthers KC, et al. Evidence that human CD8+CD45RA+CD27- cells are induced by antigen and evolve through extensive rounds of division. Int Immunol. 1999;11:1027–1033.

    Article  CAS  PubMed  Google Scholar 

  129. Appay V, Dunbar PR, Callan M, et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med. 2002;8:379–385.

    Article  CAS  PubMed  Google Scholar 

  130. Kuijpers TW, Vossen MT, Gent MR, et al. Frequencies of circulating cytolytic, CD45RA+CD27-, CD8+T lymphocytes depend on infection with CMV. J Immunol. 2003;170:4342–4348.

    Article  CAS  PubMed  Google Scholar 

  131. van Baarle D, Kostense S, van Oers MH, Hamann D, Miedema F. Failing immune control as a result of impaired CD8+ T-cell maturation: CD27 might provide a clue. Trends Immunol. 2002;23:586–591.

    Article  PubMed  Google Scholar 

  132. Wherry EJ, Teichgraber V, Becker TC, et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol. 2003;4:225–234.

    Article  CAS  PubMed  Google Scholar 

  133. Hendriks J, Gravestein LA, Tesselaar K, van Lier RA, Schumacher TN, Borst J. CD27 is required for generation and long-term maintenance of T cell immunity. Nat Immunol. 2000;1:433–440.

    Article  CAS  PubMed  Google Scholar 

  134. Hendriks J, Xiao Y, Borst J. CD27 promotes survival of activated T cells and complements CD28 in generation and establishment of the effector T cell pool. J Exp Med. 2003;198:1369–1380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Arens R, Tesselaar K, Baars PA, et al. Constitutive CD27/CD70 interaction induces expansion of effector-type T cells and results in IFNgamma-mediated B cell depletion. Immunity. 2001;15:801–812.

    Article  CAS  PubMed  Google Scholar 

  136. Tesselaar K, Arens R, van Schijndel GM, et al. Lethal T cell immunodeficiency induced by chronic costimulation via CD27- CD70 interactions. Nat Immunol. 2003;4:49–54.

    Article  CAS  PubMed  Google Scholar 

  137. Laouar A, Haridas V, Vargas D, et al. CD70+ antigen-presenting cells control the proliferation and differentiation of T cells in the intestinal mucosa. Nat Immunol. 2005;6:698–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Tone M, Tone Y, Adams E, et al. Mouse glucocorticoid-induced tumor necrosis factor receptor ligand is costimulatory for T cells. Proc Natl Acad Sci U S A. 2003;100:15059–15064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Yu KY, Kim HS, Song SY, Min SS, Jeong JJ, Youn BS. Identification of a ligand for glucocorticoid-induced tumor necrosis factor receptor constitutively expressed in dendritic cells. Biochem Biophys Res Commun. 2003;310:433–438.

    Article  CAS  PubMed  Google Scholar 

  140. Stephens GL, McHugh RS, Whitters MJ, et al. Engagement of glucocorticoid-induced TNFR family-related receptor on effector T cells by its ligand mediates resistance to suppression by CD4+CD25+ T cells. J Immunol. 2004;173:5008–5020.

    Article  CAS  PubMed  Google Scholar 

  141. Kanamaru F, Youngnak P, Hashiguchi M, et al. Costimulation via glucocorticoid-induced TNF receptor in both conventional and CD25+ regulatory CD4+ T cells. J Immunol. 2004;172:7306–7314.

    Article  CAS  PubMed  Google Scholar 

  142. Ji HB, Liao G, Faubion WA, et al. Cutting edge: the natural ligand for glucocorticoid-induced TNF receptor-related protein abrogates regulatory T cell suppression. J Immunol. 2004;172:5823–5827.

    Article  CAS  PubMed  Google Scholar 

  143. Ronchetti S, Zollo O, Bruscoli S, et al. GITR, a member of the TNF receptor superfamily, is costimulatory to mouse T lymphocyte sub-populations. Eur J Immunol. 2004;34:613–622.

    Article  CAS  PubMed  Google Scholar 

  144. Kohm AP, Williams JS, Miller SD. Cutting edge: ligation of the glucocorticoid-induced TNF receptor enhances autoreactive CD4+ T cell activation and experimental autoimmune encephalo-myelitis. J Immunol. 2004;172:4686–4690.

    Article  CAS  PubMed  Google Scholar 

  145. McHugh RS, Whitters MJ, Piccirillo CA, et al. CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity. 2002;16:311–323.

    Article  CAS  PubMed  Google Scholar 

  146. Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol. 2002;3:135–142.

    Article  CAS  PubMed  Google Scholar 

  147. Ronchetti S, Nocentini G, Riccardi C, Pandolfi PP. Role of GITR in activation response of T lymphocytes. Blood. 2002;100:350–352.

    Article  CAS  PubMed  Google Scholar 

  148. Uraushihara K, Kanai T, Ko K, et al. Regulation of murine inflammatory bowel disease by CD25+ and CD25- CD4+ glucocorticoid- induced TNF receptor family-related gene+ regulatory T cells. J Immunol. 2003;171:708–716.

    Article  CAS  PubMed  Google Scholar 

  149. Schneider P. The role of APRIL and BAFF in lymphocyte activation. Curr Opin Immunol. 2005;17:282–289.

    Article  CAS  PubMed  Google Scholar 

  150. Ingold K, Zumsteg A, Tardivel A, et al. Identification of proteogly- cans as the APRIL-specific binding partners. J Exp Med. 2005;201:1375–1383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Varfolomeev E, Kischkel F, Martin F, et al. APRIL-deficient mice have normal immune system development. Mol Cell Biol. 2004;24:997–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Thompson JS, Bixler SA, Qian F, et al. BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science. 2001; 293:2108–2111.

    Article  CAS  PubMed  Google Scholar 

  153. Nardelli B, Belvedere O, Roschke V, et al. Synthesis and release of B-lymphocyte stimulator from myeloid cells. Blood. 2001;97:198–204.

    Article  CAS  PubMed  Google Scholar 

  154. Scapini P, Nardelli B, Nadali G, et al. G-CSF-stimulated neutrophils are a prominent source of functional BLyS. J Exp Med. 2003;197:297–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Huard B, Arlettaz L, Ambrose C, et al. BAFF production by antigen-presenting cells provides T cell co-stimulation. Int Immunol. 2004;16:467–475.

    Article  CAS  PubMed  Google Scholar 

  156. Krumbholz M, Theil D, Derfuss T, et al. BAFF is produced by astro-cytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. J Exp Med. 2005;201:195–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Litinskiy MB, Nardelli B, Hilbert DM, et al. DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat Immunol. 2002;3:822–829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. He B, Raab-Traub N, Casali P, Cerutti A. EBV-encoded latent membrane protein 1 cooperates with BAFF/BLyS and APRIL to induce T cell-independent Ig heavy chain class switching. J Immunol. 2003; 171:5215–5224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Castigli E, Wilson SA, Scott S, et al. TACI and BAFF-R mediate isotype switching in B cells. J Exp Med. 2005;201:35–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Gorelik L, Gilbride K, Dobles M, Kalled SL, Zandman D, Scott ML. Normal B cell homeostasis requires B cell activation factor production by radiation-resistant cells. J Exp Med. 2003;198:937–945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lesley R, Xu Y, Kalled SL, et al. Reduced competitiveness of autoantigen-engaged B cells due to increased dependence on BAFF. Immunity. 2004;20:441–453.

    Article  CAS  PubMed  Google Scholar 

  162. Hase H, Kanno Y, Kojima M, et al. BAFF/BLyS can potentiate B-cell selection with the B-cell coreceptor complex. Blood. 2004;103:2257–2265.

    Article  CAS  PubMed  Google Scholar 

  163. Lavie F, Miceli-Richard C, Quillard J, Roux S, Leclerc P, Mariette X. Expression of BAFF (BLyS) in T cells infiltrating labial salivary glands from patients with Sjogren’s syndrome. J Pathol. 2004;202:496–502.

    Article  CAS  PubMed  Google Scholar 

  164. Ohata J, Zvaifler NJ, Nishio M, et al. Fibroblast-like synoviocytes of mesenchymal origin express functional B cell-activating factor of the TNF family in response to proinflammatory cytokines. J Immunol. 2005;174:864–870.

    Article  CAS  PubMed  Google Scholar 

  165. Craxton A, Magaletti D, Ryan EJ, Clark EA. Macrophage- and dendritic cell-dependent regulation of human B-cell proliferation requires the TNF family ligand BAFF. Blood. 2003;101:4464–4471.

    Article  CAS  PubMed  Google Scholar 

  166. Scapini P, Carletto A, Nardelli B, et al. Proinflammatory mediators elicit secretion of the intracellular B-lymphocyte stimulator pool (BLyS) that is stored in activated neutrophils: implications for inflammatory diseases. Blood. 2005;105:830–837.

    Article  CAS  PubMed  Google Scholar 

  167. Thompson JS, Schneider P, Kalled SL, et al. BAFF binds to the tumor necrosis factor receptor-like molecule B cell maturation antigen and is important for maintaining the peripheral B cell population. J Exp Med. 2000;192:129–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wu Y, Bressette D, Carrell JA, et al. Tumor necrosis factor (TNF) receptor superfamily member TACI is a high affinity receptor for TNF family members APRIL and BLyS. J Biol Chem. 2000;275:35478–35485.

    Article  CAS  PubMed  Google Scholar 

  169. Yan M, Brady JR, Chan B, et al. Identification of a novel receptor for B lymphocyte stimulator that is mutated in a mouse strain with severe B cell deficiency. Curr Biol. 2001;11:1547–1552.

    Article  CAS  PubMed  Google Scholar 

  170. Wang H, Marsters SA, Baker T, et al. TACI-ligand interactions are required for T cell activation and collagen-induced arthritis in mice. Nat Immunol. 2001;2:632–637.

    Article  CAS  PubMed  Google Scholar 

  171. Ye Q, Wang L, Wells AD, et al. BAFF binding to T cell-expressed BAFF-R costimulates T cell proliferation and alloresponses. Eur J Immunol. 2004;34:2750–2759.

    Article  CAS  PubMed  Google Scholar 

  172. Hsu BL, Harless SM, Lindsley RC, Hilbert DM, Cancro MP Cutting edge: BLyS enables survival of transitional and mature B cells through distinct mediators. J Immunol. 2002;168:5993–5996.

    Article  CAS  PubMed  Google Scholar 

  173. Schiemann B, Gommerman JL, Vora K, et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science 2001 ;293:2111–2114.

    Article  CAS  PubMed  Google Scholar 

  174. Gross JA, Dillon SR, Mudri S, et al. TACI-Ig neutralizes molecules critical for B cell development and autoimmune disease. impaired B cell maturation in mice lacking BLyS. Immunity. 2001;15:289–302.

    Article  CAS  PubMed  Google Scholar 

  175. Gorelik L, Cutler AH, Thill G, et al. Cutting edge: BAFF regulates CD21/35 and CD23 expression independent of its B cell survival function. J Immunol. 2004;172:762–766.

    Article  CAS  PubMed  Google Scholar 

  176. O’Connor BP, Raman VS, Erickson LD, et al. BCMA is essential for the survival of long-lived bone marrow plasma cells. J Exp Med. 2004;199:91–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Shulga-Morskaya S, Dobles M, Walsh ME, et al. B cell-activating factor belonging to the TNF family acts through separate receptors to support B cell survival and T cell-independent antibody formation. J Immunol. 2004;173:2331–2341.

    Article  CAS  PubMed  Google Scholar 

  178. Sasaki Y, Casola S, Kutok JL, Rajewsky K, Schmidt-Supprian M. TNF family member B cell-activating factor (BAFF) receptor- dependent and -independent roles for BAFF in B cell physiology. J Immunol. 2004;173:2245–2252.

    Article  CAS  PubMed  Google Scholar 

  179. Seshasayee D, Valdez P, Yan M, Dixit VM, Tumas D, Grewal IS. Loss of TACI causes fatal lymphoproliferation and autoimmunity, establishing TACI as an inhibitory BLyS receptor. Immunity. 2003; 18:279–288.

    Article  CAS  PubMed  Google Scholar 

  180. von Bulow GU, van Deursen JM, Bram RJ. Regulation of the T-independent humoral response by TACI. Immunity. 2001;14:573–582.

    Article  Google Scholar 

  181. Castigli E, Wilson SA, Garibyan L, et al. TACI is mutant in common variable immunodeficiency and IgA deficiency. Nat Genet. 2005;37:829–834.

    Article  CAS  PubMed  Google Scholar 

  182. Salzer U, Chapel HM, Webster AD, et al. Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nat Genet. 2005;37:820–828.

    Article  CAS  PubMed  Google Scholar 

  183. Mackay F, Woodcock SA, Lawton P, et al. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med. 1999;190:1697–1710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Gross JA, Johnston J, Mudri S, et al. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature. 2000;404:995–999.

    Article  CAS  PubMed  Google Scholar 

  185. Groom J, Kalled SL, Cutler AH, et al. Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjogren’s syndrome. J Clin Invest. 2002;109:59–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Zhang J, Roschke V, Baker KP, et al. Cutting edge: a role for B lymphocyte stimulator in systemic lupus erythematosus. J Immunol. 2001;166:6–10.

    Article  CAS  PubMed  Google Scholar 

  187. Cheema GS, Roschke V, Hilbert DM, Stohl W Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum. 2001;44:1313–1319.

    Article  CAS  PubMed  Google Scholar 

  188. Stohl W, Metyas S, Tan SM, et al. B lymphocyte stimulator overexpression in patients with systemic lupus erythematosus: longitudinal observations. Arthritis Rheum. 2003;48:3475–3486.

    Article  PubMed  Google Scholar 

  189. Mariette X, Roux S, Zhang J, et al. The level of BLyS (BAFF) correlates with the titre of autoantibodies in human Sjogren’s syndrome. Ann Rheum Dis. 2003;62:168–171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Huard B, Schneider P, Mauri D, Tschopp J, French LE. T cell costimulation by the TNF ligand BAFF. J Immunol. 2001;167:6225–6231.

    Article  CAS  PubMed  Google Scholar 

  191. Ng LG, Sutherland AP, Newton R, et al. B cell-activating factor belonging to the TNF family (BAFF)-R is the principal BAFF receptor facilitating BAFF cotimulation of circulating T and Bcells. J Immunol. 2004;173:807–817.

    Article  CAS  PubMed  Google Scholar 

  192. Theill LE, Boyle WJ, Penninger JM. RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu Rev Immunol. 2002;20:795–823.

    Article  CAS  PubMed  Google Scholar 

  193. Kong YY, Yoshida H, Sarosi I, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature. 1999;397:315–323.

    Article  CAS  PubMed  Google Scholar 

  194. Kim N, Odgren PR, Kim DK, Marks SC Jr, Choi Y Diverse roles of the tumor necrosis factor family member TRANCE in skeletal physiology revealed by TRANCE deficiency and partial rescue by a lymphocyte-expressed TRANCE transgene. Proc Natl Acad Sci USA. 2000;97:10905–10910.

    Article  CAS  PubMed  Google Scholar 

  195. Anderson DM, Maraskovsky E, Billingsley WL, et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature. 1997;390:175–179.

    Article  CAS  PubMed  Google Scholar 

  196. Wong BR, Josien R, Lee SY, et al. TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J Exp Med. 1997;186:2075–2080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Josien R, Wong BR, Li HL, Steinman RM, Choi Y TRANCE, a TNF family member, is differentially expressed on T cell subsets and induces cytokine production in dendritic cells. J Immunol. 1999;162:2562–2568.

    CAS  PubMed  Google Scholar 

  198. Lum L, Wong BR, Josien R, et al. Evidence for a role of a tumor necrosis factor-alpha (TNF-alpha)-converting enzyme-like protease in shedding of TRANCE, a TNF family member involved in osteoclastogenesis and dendritic cell survival. J Biol Chem. 1999; 274:13613–13618.

    Article  CAS  PubMed  Google Scholar 

  199. Dougall WC, Glaccum M, Charrier K, et al. RANK is essential for osteoclast and lymph node development. Genes Dev. 1999;13:2412–2424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Li J, Sarosi I, Yan XQ, et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci USA. 2000;97:1566–1571.

    Article  CAS  PubMed  Google Scholar 

  201. Josien R, Li HL, Ingulli E, et al. TRANCE, a tumor necrosis factor family member, enhances the longevity and adjuvant properties of dendritic cells in vivo. J Exp Med. 2000;191:495–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Bachmann MF, Wong BR, Josien R, Steinman RM, Oxenius A, Choi Y TRANCE, a tumor necrosis factor family member critical for CD40 ligand-independent T helper cell activation. J Exp Med. 1999;189:1025–1031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Croft.

About this article

Cite this article

So, T., Lee, SW. & Croft, M. Tumor Necrosis Factor/Tumor Necrosis Factor Receptor Family Members That Positively Regulate Immunity. Int J Hematol 83, 1–11 (2006). https://doi.org/10.1532/IJH97.05120

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1532/IJH97.05120

Key words

Navigation