Skip to main content
Log in

Adhesion Molecules, Catecholamines and Leucocyte Redistribution During and Following Exercise

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

The circulating blood normally contains no more than 1–2% of the body’s population of leucocytes. The numbers and phenotypes of circulating leucocyte subsets can change dramatically during and immediately following exercise. The surface expression of adhesion molecules makes an important contribution to such responses by changing patterns of cell trafficking. Alterations in the surface expression of adhesion molecules could reflect a shedding of molecules, selective apoptosis or differential trafficking of cells with a particular phenotype, effects from mechanical deformation of the cytoplasm, active biochemical processes involving cytokines, catecholamines, glucocorticoids or other hormones, or changes in the induction of adhesion molecules. The expression of adhesion molecules changes with maturation and activation of leucocytes. Typically, mature cells express lower densities of L-selectin (CD62L), the homing receptor for secondary lymphoid organs, and higher densities of LFA-1 (CD11a), the molecule associated with trafficking to non-lymphoid reservoir sites. The neutrophils and natural killer cells that are mobilised during exercise also express high levels of Mac-1 (CD11b), a marker associated with cellular activation. Possibly, exercise demarginates older cells that are awaiting destruction in the spleen. Plasma concentrations of catecholamines rise dramatically with exercise, and there is growing evidence that catecholamines, acting through a cyclic adenosine monophosphate second messenger system, play an important role in modifying the surface expression of adhesion molecules. Analogous changes can be induced by other forms of stress that release catecholamines or by catecholamine infusion, and responses are blocked by β2-blocking agents. Catecholamines also modify adherence and expression of adhesion molecules in vitro. Cell trafficking is modified by genetic deficiencies in the expression of adhesion molecules, but leucocyte responses to exercise and catecholamines are generally unaffected by splenectomy. A number of clinical conditions including atherogenesis and metaplasia are marked by an altered expression of adhesion molecules. The effects of exercise on these molecules could thus have important health implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
table I
table II
Table III

Similar content being viewed by others

References

  1. Shephard RJ. Physical activity, training and the immune response. Carmel (IN): Cooper Publications, 1997

    Google Scholar 

  2. Shephard RJ, Shek PN. Effects of exercise and training on NK cell counts and cytolytic activity: a meta-analysis. Sports Med 1999; 28: 177–95

    Article  PubMed  CAS  Google Scholar 

  3. Arber N, Berliner S, Rotenberg Z, et al. Detection of aggregated leukocytes in the circulating pool during stress demargination is not necessarily a result of decreased leukocyte adhesiveness. Acta Haematol 1991; 86: 20–4

    Article  PubMed  CAS  Google Scholar 

  4. Foster NK, Martyn JB, Rangno RE, et al. Leukocytosis of exercise: role of cardiac output and catecholamines. J Appl Physiol 1986; 61: 2218–23

    PubMed  CAS  Google Scholar 

  5. Muir AL, Cruz M, Martin BA, et al. Leukocyte kinetics in the human lung: role of exercise and catecholamines. J Appl Physiol 1984; 57: 711–9

    PubMed  CAS  Google Scholar 

  6. Thommasen HV, Martin BA, Wiggs BR, et al. Effect of pulmonary blood flow on leukocyte uptake and release by dog lung. J Appl Physiol 1984; 56: 966–74

    PubMed  CAS  Google Scholar 

  7. Wiggs BR, English D, Quinlan WM, et al. Contributions of capillary pathway size and neutrophil deformability to neutrophil transit through rabbit lung. J Appl Physiol 1994; 77: 463–70

    PubMed  CAS  Google Scholar 

  8. Shephard RJ, Gannon G, Hay JB, et al. Adhesion molecule expression in acute and chronic exercise. Crit Rev Immunol 2000; 20: 245–66

    PubMed  CAS  Google Scholar 

  9. Nagatomi R, Okutsu M, Ohmori H. Involvement of chemokine receptor in post-exercise lymphopenia [abstract]. Med Sci Sports Exerc 2002; 33: S48

    Google Scholar 

  10. Benschop RJ, Oostveen FG, Heijnen CJ, et al. Beta 2-adrenergic stimulation causes detachment of natural killer cells from cultured endothelium. Eur J Appl Physiol 1993; 23: 3242–7

    CAS  Google Scholar 

  11. Benschop RJ, Jacobs R, Sommer B, et al. Modulation of the immunologic response to acute stress in humans by β-blockade or benzodiazepines: detachment of natural killer cells from cultured endothelium. FASEB J 1996; 10: 517–24

    PubMed  CAS  Google Scholar 

  12. Gabriel H, Kindermann W. Adhesion molecules during immune response to exercise. Can J Physiol Pharmacol 1998; 76: 512–23

    Article  PubMed  CAS  Google Scholar 

  13. Shephard RJ, Shek PN. Effects of exercise and training on natural killer cell counts and cytolytic activity: a meta-analysis. Sports Med 1999; 28: 177–95

    Article  PubMed  CAS  Google Scholar 

  14. Shinkai S, Shore S, Shek PN, et al. Acute exercise and immune function: relationship between lymphocyte activity and changes in subset counts. Int J Sports Med 1992; 13: 452–61

    Article  PubMed  CAS  Google Scholar 

  15. Kurokawa Y, Shinkai S, Torii J, et al. Exercise-induced changes in the expression of surface adhesion molecules on circulating granulocytes and lymphocyte subpopulations. Eur J Appl Physiol 1995; 71: 245–52

    Article  CAS  Google Scholar 

  16. van Eeden SF, Granton J, Hards JM, et al. Expression of the cell adhesion molecules on leukocytes that demarginate during acute maximal exercise. J Appl Physiol 1999; 86: 970–6

    PubMed  Google Scholar 

  17. Bruunsgaard H, Jensen M, Schjerling P, et al. Exercise induces recruitment of lymphocytes with an activated phenotype and short telomeres in young and elderly humans. Life Sci 1999; 65: 2623–33

    Article  PubMed  CAS  Google Scholar 

  18. Atherton A, Born GVR. Quantitative investigations of the adhesiveness of circulating polymorphonuclear leucocytes to blood vessel walls. J Physiol 1972; 222: 447–74

    PubMed  CAS  Google Scholar 

  19. Benschop RJ, Rodriguez-Feuerhahn M, Schedlowski M. Catecholamine-induced leucocytosis: early observations, current research, and future directions. Brain Behav Immun 1996; 10: 77–91

    Article  PubMed  CAS  Google Scholar 

  20. Mastro AM, Schlosser DA, Grove DS, et al. Lymphocyte subpopulations in lymphoid organs of rats after acute resistance exercise. Med Sci Sports Exerc 1999; 31: 74–81

    Article  PubMed  CAS  Google Scholar 

  21. Kuebler WM, Kuhnle GE, Groh L, et al. Contribution of L-selectin to leukocyte sequestration in the pulmonary microvessels by intravital microscopy in rabbits. J Physiol 1997; 501: 375–86

    Article  PubMed  CAS  Google Scholar 

  22. Steeber DA, Green NE, Sato S, et al. Lymphocyte migration in L-selectin deficient mice: altered subset migration and aging of the immune system. J Immunol 1996; 157: 1096–106

    PubMed  CAS  Google Scholar 

  23. Phillips D, Rezvani K, Bain BJ. Exercise induced mobilization of the marginated granulocyte pool in the investigation of ethnic neutropenia. J Clin Pathol 2000; 53: 481–3

    Article  PubMed  CAS  Google Scholar 

  24. Cuzzolin L, Lussignoli S, Crivellente F, et al. Influence of an acute exercise on neutrophil and platelet adhesion, nitric oxide plasma metabolites in inactive and active subjects. Int J Sports Med 2000; 21: 289–93

    Article  PubMed  CAS  Google Scholar 

  25. Ortega E, Collazos ME, Maynar M, et al. Stimulation of the phagocytic function of neutrophils in sedentary men after acute moderate exercise. Eur J Appl Physiol 1993; 66: 60–4

    Article  CAS  Google Scholar 

  26. Nemet D, Hong S, Mills PJ, et al. Effect of unilateral wrist flexion exercise on peripheral blood mononuclear cells in healthy adults [abstract]. Med Sci Sports Exerc 2002; 33: S48

    Google Scholar 

  27. Suzui M, Nagao F, Takeda K, et al. Changes in adhesion molecule on natural killer cell post exercise [abstract]. Med Sci Sports Exerc 2002; 34: S115

    Google Scholar 

  28. Gannon GA, Rhind SG, Shek PN, et al. Is the differential lymphocyte subset mobilization during exercise linked to subset expression of lymphocyte function-associated antigen (LFA-1) [abstract]? Med Sci Sports Exerc 1998; 30: S21

    Google Scholar 

  29. Gannon GA, Rhind SG, Shek PN, et al. The majority of CD4+, but not CD8hi+, T cells mobilized to peripheral blood during exercise express a CD45 RO+ memory phenotype [abstract]. Int J Sports Med 1998; 19: S213

    Google Scholar 

  30. Gannon GA, Rhind SG, Shek PN, et al. Differential cell adhesion molecule expression and lymphocyte mobilisation during prolonged aerobic exercise. Eur J Appl Physiol 2001; 84: 272–82

    Article  PubMed  CAS  Google Scholar 

  31. Gannon GA, Rhind S, Shek PN, et al. Naive and memory T cell subsets are differentially mobilized during physical stress. Int J Sports Med 2002; 23: 223–9

    Article  PubMed  CAS  Google Scholar 

  32. Jilma B, Eichler HG, Stohlawetz P, et al. Effects of exercise on circulating vascular adhesion molecules in healthy men. Immunobiology 1997; 197: 505–12

    Article  PubMed  CAS  Google Scholar 

  33. Jordan J, Beneke R, Hütler M, et al. Expression of CD11b on granulocytes is related to exercise intensity [abstract]. Med Sci Sports Exerc 1997; 29: S298

    Google Scholar 

  34. Jordan J, Beneke R, Hütler M, et al. Moderate exercise leads to decreased expression of β1 and β2 integrins on leucocytes. Eur J Appl Physiol 1997; 76: 192–4

    Article  CAS  Google Scholar 

  35. Jordan J, Beneke R, Hütler M, et al. Regulation of MAC-1 (CD11b/CD18) expression on circulating granulocytes in endurance runners. Med Sci Sports Exerc 1999; 31: 362–7

    Article  PubMed  CAS  Google Scholar 

  36. Kappel M, Tvede N, Galbo H, et al. Evidence that the effect of physical exercise on NK cell activity is mediated by epinephrine. J Appl Physiol 1991; 70: 2530–4

    PubMed  CAS  Google Scholar 

  37. Lewicki R, Tchorzewski H, Deny A, et al. Effect of physical exercise on some parameters of immunity in conditioned sportsmen. Int J Sports Med 1987; 8: 309–14

    Article  PubMed  CAS  Google Scholar 

  38. Li N, Wallen NH, Hjemdahl P. Evidence for prothrombotic effects of exercise and limited protection by aspirin. Circulation 1999; 100: 1374–9

    Article  PubMed  CAS  Google Scholar 

  39. Rehman J, Mills PJ, Carter SM, et al. Dynamic exercise leads to an increase in circulating ICAM-1; further evidence for adrenergic modulation of adhesion. Brain Behav Immun 1997; 11: 343–51

    Article  PubMed  CAS  Google Scholar 

  40. Goebel MU, Mills PJ. Acute psychological stress and exercise and changes in peripheral leukocyte adhesion molecule expression and density. Psychosom Med 2000; 62: 664–70

    PubMed  CAS  Google Scholar 

  41. Gabriel H, Brechtel L, Urhausen A, et al. Recruitment and recirculation of leukocytes after an ultramarathon run: preferential homing of cells expressing high levels of the adhesion molecule LFA-1. Int J Sports Med 1994; 15: S148–53

    Article  PubMed  Google Scholar 

  42. Mills PJ, Maisel AS, Ziegler MG, et al. Peripheral blood mononuclear cell-endothelial adhesion in human hypertension following exercise. J Hypertension 2000; 18: 1801–6

    Article  CAS  Google Scholar 

  43. Rodriguez AB, Barriga C, De la Fuente M. Phagocytic function of blood neutrophils in sedentary young people after physical exercise. Int J Sports Med 1991; 12: 276–80

    Article  PubMed  CAS  Google Scholar 

  44. Perez CJ, Nemets D, Mills PJ, et al. Effects of laboratory versus field exercise on leukocyte subsets and cell adhesion molecule expression in children. Eur J Appl Physiol 2001; 86: 34–9

    Article  PubMed  CAS  Google Scholar 

  45. Nagatomi R, Tamagawa A, Ohmori H, et al. Evidence that leukocytosis during prolonged exercise is not necessarily involved in inflammation [abstract]. Int J Sports Med 1997; 18Suppl. I: S111

    Google Scholar 

  46. Tilz GP, Dome W, Diez-Ruiz A, et al. Increased immune activation during and after physical exercise. Immunobiology 1993; 188: 194–202

    Article  PubMed  CAS  Google Scholar 

  47. De la Fuente M, Martin I, Ortega E. Changes in the phagocytic function of peritoneal macrophages from old mice after strenuous physical exercise. Comp Immunol Microbiol Infect Dis 1990; 13: 189–98

    Article  PubMed  Google Scholar 

  48. De la Fuente M, Martin I, Ortega E. Effect of physical exercise on the phagocytic function of peritoneal macrophages from Swiss mice. Comp Immunol Microbiol Infect Dis 1993; 16: 29–37

    Article  PubMed  Google Scholar 

  49. Ortega E, Collazos ME, Barriga C, et al. Effect of physical activity stress on the phagocytic process of peritoneal macrophages from old guinea pigs. Mech Ageing Dev 1992; 65: 157–65

    Article  PubMed  CAS  Google Scholar 

  50. Gray AB, Telford RD, Collins M, et al. Granulocyte activation induced by intense interval running. J Leukoc Biol 1993; 53: 591–7

    PubMed  CAS  Google Scholar 

  51. Miles MP, Leach SK, Kraemer WJ, et al. Leukocyte adhesion molecule expression during intense resistance exercise. J Appl Physiol 1998; 84: 1604–9

    PubMed  CAS  Google Scholar 

  52. Pizza FX, Davis BH, Henrickson SD, et al. Adaptation to eccentric exercise: effect on CD64 and CD11b/CD18 expression. J Appl Physiol 1996; 80: 47–55

    PubMed  CAS  Google Scholar 

  53. Malm C, Lenkei R, Sjodin B. Effects of eccentric exercise on the immune system in men. J Appl Physiol 1999; 86: 461–8

    PubMed  CAS  Google Scholar 

  54. Smith LL, Anwar A, Fragen M, et al. Cytokines and cell adhesion molecules associated with high intensity eccentric exercise. Eur J Appl Physiol 2000; 82: 61–7

    Article  PubMed  CAS  Google Scholar 

  55. Stibenz D, Bauhrer C. Down-regulation of L-selectin surface expression by various leukocyte isolation procedures. Scand J Immunol 1994; 39: 59–63

    Article  CAS  Google Scholar 

  56. Wikman A, Lundahl J, Fernvik E, et al. Altered expression of adhesion molecules (L-selectin and Mac-1) on granulocytes during storage. Transfusion 1994; 34: 167–71

    Article  PubMed  CAS  Google Scholar 

  57. Mobley JL, Rigby SM, Dailey MO. Regulation of adhesion molecule expression by CD8 T cells in vivo: II. expression of L-selectin (CD62L) by memory cytolytic T cells responding to minor histocompatibility antigens. J Immunol 1994; 153: 5443–52

    PubMed  CAS  Google Scholar 

  58. Tedder TF, Matsuyama T, Rothstein D, et al. Human antigen-specific memory T cells express the homing receptor (LAM-1) necessary for lymphocyte recirculation. Eur J Immunol 1990: 20: 1351–5

    Article  PubMed  CAS  Google Scholar 

  59. Wroblewski M, Hamann A. CD45-mediated signals can trigger shedding of lymphocyte L-selectin. Int Immunol 1997; 9: 555–62

    Article  PubMed  CAS  Google Scholar 

  60. Bicknell S, van Eeden S, Hayashi S, et al. A nonradioisotopic method for tracing neutrophils in vivo using 5′-bromo-2-deoxyuridine. Am J Respir Cell Mol Biol 1994; 10: 16–23

    PubMed  CAS  Google Scholar 

  61. Kitagawa Y, van Eeden SF, Redenbach DM, et al. Effect of mechanical deformation on the structure and function of polymorphonuclear leukocytes. J Appl Physiol 1997; 82: 1397–405

    Article  PubMed  CAS  Google Scholar 

  62. Chao CC, Jensen R, Dailey MO. Mechanism of L-selectin regulation by activated T cells. J Immunol 1997; 159: 1686–94

    PubMed  CAS  Google Scholar 

  63. Sahnoun Z, Jamoussi K, Zehgal KM. Free radicals and antioxidants: physiology, human pathology and therapeutic aspects [in French]. Therapie 1998; 53: 315–39

    PubMed  CAS  Google Scholar 

  64. Griffin JD, Spertini O, Ernst TJ, et al. GM-CSF and other cytokines regulate surface expression of the leukocyte adhesion molecule-1 on human neutrophils, monocytes and their precursors. J Immunol 1990; 145: 576–84

    PubMed  CAS  Google Scholar 

  65. Nakagawa M, Bondy GP, Waisman D, et al. The effect of glucocorticoids on the expression of L-selectin on polymorphonuclear leukocytes. Blood 1999; 93: 2730–7

    PubMed  CAS  Google Scholar 

  66. Benschop RJ, Schedlowski M, Wienecke H, et al. Adrenergic control of natural killer cell circulation and adhesion. Brain Behav Immun 1997; 11: 321–32

    Article  PubMed  CAS  Google Scholar 

  67. Mills PJ, Goebel M, Rehman J, et al. Leukocyte adhesion molecule expression and T cell naive/memory status following isoproterenol infusion. J Neuroimmunol 2000; 102: 137–44

    Article  PubMed  CAS  Google Scholar 

  68. Matsuba KT, van Eeden SF, Bicknell SG, et al. Apoptosis in circulating PMN: increased susceptibility in L-selectin deficient PMN. Am J Physiol 1997; 272: H2852–8

    PubMed  CAS  Google Scholar 

  69. Steensberg A, Morrow J, Toft AD, et al. Prolonged exercise, lymphocyte apoptosis and F2-isoprostanes. Eur J Appl Physiol 2002; 87: 38–42

    Article  PubMed  CAS  Google Scholar 

  70. Seabrook TJ, Ristevski B, Rhind SG, et al. Epinephrine causes a reduction in lymph node cell output in sheep. Can J Physiol Pharmacol 2001; 79: 246–52

    Article  PubMed  CAS  Google Scholar 

  71. Sato Y, Walley KR, Klut ME, et al. Nitric oxide reduces the sequestration of activated PMN by reducing deformability change and CD18 expression. Am J Respir Crit Care Med 1999; 159: 1469–76

    PubMed  CAS  Google Scholar 

  72. Rainer TH, Chan TYF, Cocks RA. Temporal changes in the expression of L-selectin following non-thermal injury. J Accid Emerg Med 1998; 15: 131–2

    Google Scholar 

  73. Carlos T, Harlan J. Leukocyte-endothelial adhesion molecules. Blood 1994; 84: 2068–101

    PubMed  CAS  Google Scholar 

  74. Gearing AJ, Newman W. Circulating adhesion molecules in disease. Immunol Today 1993; 14: 506–12

    Article  PubMed  CAS  Google Scholar 

  75. Schedlowski M, Hosch W, Oberbeck R, et al. Catecholamines modulate human NK cell circulation and function via spleen-independent beta 2-adrenergic mechanisms. J Immunol 1996: 156: 93–9

    PubMed  CAS  Google Scholar 

  76. Nakagawa M, Terashima T, D’yachkova Y, et al. Glucocorticoid-induced granulocytosis: contribution of marrow release and demargination of intravascular granulocytes. Circulation 1998; 98: 2307–13

    Article  PubMed  CAS  Google Scholar 

  77. Sen CK, Roy S. Antioxidant regulation of cell adhesion. Med Sci Sports Exerc 2001; 33: 377–81

    Article  PubMed  CAS  Google Scholar 

  78. Britten MB, Zeiher AM, Schachinger V. Clinical importance of coronary endothelial vasodilator dysfunction and therapeutic options. J Intern Med 1999; 245: 315–27

    Article  PubMed  CAS  Google Scholar 

  79. Provost P, Lam JY, Lacoste L, et al. Endothelium-derived nitric oxide attenuates neutrophil adhesion to endothelium under arterial flow conditions. Arterioscler Thromb 1994; 14: 331–5

    Article  PubMed  CAS  Google Scholar 

  80. Tsao PS, McEvoy LM, Drexler H, et al. Cellular and molecular cardiology: enhanced endothelial adhesiveness in hypercholesterolemia is attenuated by L-arginine. Circulation 1994; 89: 2176–82

    Article  PubMed  CAS  Google Scholar 

  81. Niu XF, Smith CW, Kubes P. Intracellular oxidative stress induced by nitric oxide synthesis inhibition increases endothelial cell adhesion to neutrophils. Circ Res 1994; 74: 1133–40

    Article  PubMed  CAS  Google Scholar 

  82. Jeng JR, Chang CH, Shieh SM, et al. Oxidized low-density lipoprotein enhances monocyte-endothelial cell binding against shear-stress-induced detachment. Biochim Biophys Acta 1993; 1178: 221–7

    Article  PubMed  CAS  Google Scholar 

  83. Rinder CS, Bonan JL, Rinder HM, et al. Cardiopulmonary bypass induces leukocyte-platelet adhesion. Blood 1992; 79: 1201–5

    PubMed  CAS  Google Scholar 

  84. Hay JB, Andrade WH. Lymphocyte recirculation, exercise and immune responses. Can J Physiol Pharmacol 1998; 76: 490–6

    Article  PubMed  CAS  Google Scholar 

  85. Pabst R. The spleen in lymphocyte migration. Immunol Today 1988; 9: 43–5

    Article  PubMed  CAS  Google Scholar 

  86. Klonz A, Wonigeit K, Pabst R, et al. The marginal blood pool of the rat contains not only granulocytes, but also lymphocytes, NK cells and monocytes: a second intravascular compartment, its cellular composition, adhesion molecule expression and interaction with the peripheral blood pool. Scand J Immunol 1996; 44: 461–9

    Article  PubMed  CAS  Google Scholar 

  87. Picker L, Treer J, Ferguson-Darnell B, et al. Control of lymphocyte recirculation in man: 1. differential regulation of the peripheral lymph node homing receptor L-selectin on T cells during the virgin to memory cell transition. J Immunol 1993: 150: 1105–21

    PubMed  CAS  Google Scholar 

  88. Jung TM, Gallatin WM, Weissman IL, et al. Down-regulation of homing receptors after T cell activation. J Immunol 1988; 141: 4110–7

    PubMed  CAS  Google Scholar 

  89. Sanders ME, Makgoba MW, Sharrow SO, et al. Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2, and LFA-1) and three other molecules (UCHL1, CDw29, and Pgp-1) and have enhanced IFN-gamma production. J Immunol 1988; 140: 1401–7

    PubMed  CAS  Google Scholar 

  90. Fabbri M, Bianchi E, Fumagalli L, et al. Regulation of lymphocyte traffic by adhesion molecules. Inflamm Res 1999; 48: 239–46

    Article  PubMed  CAS  Google Scholar 

  91. Picker L, Treer J, Ferguson-Darnell B, et al. Control of lymphocyte recirculation in man: 2. differential regulation of the cutaneous lymphocyte-associated antigen, a tissue selective homing receptor for skin-homing T-cells. J Immunol 1993; 150: 1122–36

    PubMed  CAS  Google Scholar 

  92. Saltini C, Trapnell BC, Tamura N, et al. Biased accumulation of T lymphocytes with ‘memory’-type CD45 leucocyte common antigen gene expression on the epithelial surface of the human lung. J Exp Med 1990; 171: 1123–40

    Article  PubMed  CAS  Google Scholar 

  93. Schweighoffer T, Tanaka Y, Tidswell M, et al. Selective expression of integrin alpha-4 beta-7 on a subset of human CD4+ memory T cells with hallmarks of gut-trophism. J Immunol 1993; 151: 717–29

    PubMed  CAS  Google Scholar 

  94. van Eeden SF, Kitagawa Y, Klut ME, et al. Polymorphonuclear leukocytes released from the bone marrow preferentially sequester in lung microvessels. Microcirculation 1997; 4: 369–80

    Article  PubMed  Google Scholar 

  95. Klut EM, Whalen B, Hogg JC. Activation-associated changes in blood and bone marrow neutrophils. J Leukoc Biol 1997; 62: 186–94

    PubMed  CAS  Google Scholar 

  96. van Eeden SF, Miyagashima R, Haley L, et al. A possible role for L-selectin in the release of polymorphonuclear leukocytes from bone marrow. Am J Physiol 1997; 272: H1717–24

    PubMed  Google Scholar 

  97. Deuster PA, Zelazowska EB, Singh A, et al. Expression of lymphocyte subsets after exercise and dexamethasone in high and low stress responders. Med Sci Sports Exerc 1999; 31: 1799–806

    Article  PubMed  CAS  Google Scholar 

  98. Mills PJ, Rehman J, Ziegler MG, et al. Nonselective beta blockade attenuates the recruitment of CD62L(-)T lymphocytes following exercise. Eur J Appl Physiol 1999; 79: 531–4

    Article  CAS  Google Scholar 

  99. Kishimoto TK, Jutila MA, Berg EL, et al. Neutrophil Mac-1 and MEL-14 adhesion proteins inversely regulated by chemotactic factors. Science 1989; 245: 1228–41

    Article  Google Scholar 

  100. Gabriel H, Schmitt B, Urhausen A, et al. Increased CD45RA+CD45RO+ cells indicate activated T cells after endurance exercise. Med Sci Sports Exerc 1993; 25: 1352–7

    PubMed  CAS  Google Scholar 

  101. Gabriel H, Schwarz L, Born P, et al. Differential mobilization of leukocyte and lymphocyte subpopulations into the circulation during endurance exercise. Eur J Appl Physiol 1992; 65: 529–34

    Article  CAS  Google Scholar 

  102. Gabriel H, Kullmer T, Schwarz L, et al. Circulating leukocyte and lymphocyte subpopulations in sedentary subjects following graded maximal exercise with hypoxia. Eur J Appl Physiol 1993; 67: 348–53

    Article  CAS  Google Scholar 

  103. Bell EB, Sparshott SM. Interconversion of CD45R subsets of CD4 T cell in vivo. Nature 1990; 348: 163–6

    Article  PubMed  CAS  Google Scholar 

  104. Lanier LL, Phillips JH, Hackett J, et al. Natural killer cells: definition of a cell type rather than function. J Immunol 1986; 137: 2735–9

    PubMed  CAS  Google Scholar 

  105. Prince HE, York J, Jensen ER. Phenotypic comparison of the three populations of human lymphocytes defined by CD45RO and CD45RA expression. Cell Immunol 1992; 145: 254–62

    Article  PubMed  CAS  Google Scholar 

  106. Fujii Y, Okumura M, Inada K, et al. Reversal of CD45 isoform switching in CD8+ T cells. Cell Immunol 1992; 139: 176–84

    Article  PubMed  CAS  Google Scholar 

  107. Okumura M, Fujii Y, Inada K, et al. Both CD45RA+ and CD45RA-subpopulations of CD8+ T cells contain cells with high levels of lymphocyte function-associated antigen-1 expression, a phenotype of primed T cells. J Immunol 1993; 150: 429–37

    PubMed  CAS  Google Scholar 

  108. Kanegane H, Kasahara Y, Niida Y, et al. Expression of L-selectin (CD62L) discriminates Th1 and Th2-like cytokineproducing memory CD4+ T cells. Immunology 1996; 87: 186–90

    Article  PubMed  CAS  Google Scholar 

  109. Tsuji T, Nibu R, Iwai K, et al. Efficient induction of immunoglobulin production in neonatal naive B cells by memory CD4+ T cell subset expressing homing receptor L-selectin. J Immunol 1994; 152: 4417–24

    PubMed  CAS  Google Scholar 

  110. Madden KS, Felton DL. Experimental basis for neural-immune interactions. Physiol Rev 1995; 75: 77–106

    PubMed  CAS  Google Scholar 

  111. van Tits LJH, Michel MC, Grosse-Wilde H, et al. Catecholamines increase lymphocyte β2-adrenergic receptors via a β2-adrenergic, spleen dependent process. Am J Physiol 1990; 258: E191–202

    PubMed  Google Scholar 

  112. Crary B, Hauser SL, Borysenko M, et al. Epinephrine induced changes in the distribution of lymphocyte subsets in peripheral blood of humans. J Immunol 1983; 131: 1178–81

    PubMed  CAS  Google Scholar 

  113. Landmann RMA. Beta-adrenergic receptors in human leukocyte subpopulations. Eur J Clin Invest 1992; 22Suppl. 1: 30–6

    PubMed  Google Scholar 

  114. Murray DR, Irwin M, Rearden CA, et al. Sympathetic and immune interactions during dynamic exercise: mediation via a beta-2-adrenergic-dependent mechanism. Circulation 1992; 86: 203–13

    Article  PubMed  CAS  Google Scholar 

  115. Carlson SL, Brooks WH, Roszmann TL. Neurotransmitter- lymphocyte interactions: dual receptor modulation of lymphocyte proliferation and cAMP production. J Neuroimmunol 1989; 24: 155–62

    Article  PubMed  CAS  Google Scholar 

  116. Kansas GS, Spertini O, Stoolman LM, et al. Molecular mapping of functional domains of the leukocyte receptor for endothelium. J Cell Biol 1991; 114: 351–8

    Article  PubMed  CAS  Google Scholar 

  117. Watson SR, Imai Y, Fennie C, et al. The complement bindinglike domains of the murine homing receptor facilitate lectin binding. J Cell Biol 1991; 115: 235–43

    Article  PubMed  CAS  Google Scholar 

  118. Hoffman-Goetz L, Pedersen BK. Exercise and the immune system: a model of the stress response. Immunol Today 1994; 15: 382–7

    Article  PubMed  CAS  Google Scholar 

  119. Katz P. Exercise and the immune response. Clin Rheumatol 1994; 8: 53–61

    CAS  Google Scholar 

  120. Brodde OE, Daul A, O’Hara N. Beta-adrenoceptor changes in human lymphocytes, induced by dynamic exercise. Naunyn Schmiedebergs Arch Pharmacol 1984; 325: 190–2

    Article  PubMed  CAS  Google Scholar 

  121. Burman KD, Ferguson W, Djuh Y-Y, et al. Beta receptors in peripheral mononuclear cells increase acutely during exercise. Acta Endocrinol (Copenh) 1985; 109: 563–8

    CAS  Google Scholar 

  122. Fujii N, Miyazaki H, Homma S, et al. Dynamic exercise induces translocation of beta-2 adrenergic receptors in human lymphocytes. Acta Physiol Scand 1993; 148: 463–4

    Article  PubMed  CAS  Google Scholar 

  123. Heikkonen E, Maki T, Kontula K, et al. Physical exercise after alcohol intake: effect on plasma catecholamines and lymphocyte beta-adrenergic receptors. Alcohol Clin Exp Res 1991; 15: 291–4

    Article  PubMed  CAS  Google Scholar 

  124. Schuetz W, Traeger K, Anhaeupl T, et al. Adjustment of metabolism, catecholamines and beta-adrenoceptors to 90 min of cycle ergometry. Eur J Appl Physiol 1995; 70: 81–7

    Article  CAS  Google Scholar 

  125. Verde TJ, Thomas S, Moore RW, et al. Immune responses and increased training of the elite athlete. J Appl Physiol 1992; 73: 1494–9

    PubMed  CAS  Google Scholar 

  126. Weicker H, Werle E. Interaction between hormones and the immune system. Int J Sports Med 1991; 12: S30–7

    Article  PubMed  Google Scholar 

  127. Brenner I, Shek PN, Zamecnik J, et al. Stress hormones and the immunological responses to heat and exercise. Int J Sports Med 1998; 19: 130–43

    Article  PubMed  CAS  Google Scholar 

  128. Mazzeo RS, Rajkumar C, Jennings G, et al. Norepinephrine spillover at rest and during submaximal exercise in young and old subjects. J Appl Physiol 1997; 82: 1869–74

    PubMed  CAS  Google Scholar 

  129. Kjaer M. Epinephrine and some other hormonal responses to exercise in man: with special reference to physical training. Int J Sports Med 1989; 10:2–15

    Article  PubMed  CAS  Google Scholar 

  130. Nagao F, Suzui M, Takeda K, et al. Mobilization of NK cells by exercise: downmodulation of adhesion molecules on NK cells by catecholamines. Am J Physiol 2000; 279: R1251–6

    CAS  Google Scholar 

  131. Brenner IKM, Zamecnik J, Shek PN, et al. The impact of heat exposure and repeated exercise on circulating stress hormones. Eur J Appl Physiol 1997; 76: 445–54

    Article  CAS  Google Scholar 

  132. Field CJ, Gougeon R, Marliss EB. Circulating mononuclear cells and function during intense exercise. J Appl Physiol 1991; 73: 1089–97

    Google Scholar 

  133. Nieman DC, Nehlsen-Cannarella SL. Effects of endurance exercise on the immune response. In: Shephard RJ, Astrand PO, editors. Endurance in sport. Oxford: Blackwell Scientific Publications, 1992: 487–504

    Google Scholar 

  134. Rhind SG, Gannon GA, Shek PN, et al. Contribution of exertional hyperthermia to sympathoadrenal-mediated lymphocyte subset redistribution. J Appl Physiol 1999; 87: 1178–85

    PubMed  CAS  Google Scholar 

  135. Grazzi L, Salmaggi A, Dufour A, et al. Physical effort-induced changes in immune parameters. Int J Neurosci 1993; 68: 133–40

    Article  PubMed  CAS  Google Scholar 

  136. Kendall A, Hoffman-Goetz L, Houston M, et al. Exercise and blood lymphocyte subset responses: intensity, duration, and subject fitness effects. J Appl Physiol 1990; 69: 251–60

    PubMed  CAS  Google Scholar 

  137. Nieman DC, Nehlsen-Cannarella SL, Donohue KM, et al. The effect of acute moderate exercise on leukocyte and lymphocyte subpopulations. Med Sci Sports Exerc 1991; 23: 578–85

    PubMed  CAS  Google Scholar 

  138. Stock C, Schaller K, Baum M, et al. Catecholamines, lymphocyte subsets, and cyclic adenosine monophosphate production in mononuclear cells and CD4+ cells in response to submaximal resistance exercise. Eur J Appl Physiol 1995; 71: 166–72

    Article  CAS  Google Scholar 

  139. Butler J, Kelly JG, O’Malley K, et al. β-Adrenoreceptor adaptation to acute exercise. J Physiol 1983; 344: 113–7

    PubMed  CAS  Google Scholar 

  140. Frey MJ, Mancini D, Fischberg D, et al. Effect of exercise duration on density and coupling of beta-adrenergic receptors on human mononuclear cells. J Appl Physiol 1989; 66: 1495–500

    Google Scholar 

  141. Butler J, O’Brien M, O’Malley K, et al. Relationship of β-Adrenoreceptor density to fitness in athletes. Nature 1982: 298: 60–2

    Article  PubMed  CAS  Google Scholar 

  142. Opstad PK, Wiik P, Haugen A-H, et al. Adrenaline stimulated cyclic adenosine monophosphate response in leucocytes is reduced after prolonged physical activity combined with sleep and energy deprivation. Eur J Appl Physiol 1994; 69: 371–5

    Article  CAS  Google Scholar 

  143. Little RA, Frayn KN, Randall PE, et al. Plasma catecholamines in patients with acute myocardial infarction and in cardiac arrest. Q J Med 1985; 214: 133–40

    Google Scholar 

  144. Cocks RA, Chan TY, Rainer TH. Leukocyte L-selectin is up-regulated after mechanical trauma in adults. J Trauma 1998; 45: 1–6

    Article  PubMed  CAS  Google Scholar 

  145. Jaattella A, Alho A, Avikainen V, et al. Plasma catecholamines in severely injured patients: a prospective study on 45 patients with multiple injuries. Br J Surg 1975; 62: 177–81

    Article  Google Scholar 

  146. Gallatin WM, Weissman IL, Butcher EC. A cell-surface molecule involved in organ-specific homing of lymphocytes. Nature 1983; 304: 30–4

    Article  PubMed  CAS  Google Scholar 

  147. Ottaway CA, Husband AJ. Central nervous system influence on lymphocyte migration. Brain Behav Immun 1992; 6: 97–116

    Article  PubMed  CAS  Google Scholar 

  148. Benschop RJ, Nieuwenhuis EES, Tromp EAM, et al. Betaadrenergic blockade: effects of beta-adrenergic blockade on immunologic and cardiovascular changes induced by mental stress. Circulation 1994; 89: 762–9

    Article  PubMed  CAS  Google Scholar 

  149. Dimsdale JE, Moss J. Short term catecholamine response to psychological stress. Psychosom Med 1980; 42: 493–7

    PubMed  CAS  Google Scholar 

  150. Benschop RJ, Geenen R, Mills PJ, et al. Cardiovascular and immune responses to acute psychological stress in young and old women: a meta-analysis. Psychosom Med 1998; 60: 290–6

    PubMed  CAS  Google Scholar 

  151. Mills PJ, Dimsdale JE. The effects of acute psychologic stress on cellular adhesion molecules. J Psychosom Res 1996; 41: 49–53

    Article  PubMed  CAS  Google Scholar 

  152. Lerman Y, Melamed S, Shragin Y, et al. Association between burnout at work and leukocyte adhesiveness/aggregation. Psychosom Med 1999; 61: 828–33

    PubMed  CAS  Google Scholar 

  153. Herbert TB. Stress and immunity in humans: a meta-analytic review. Psychosom Med 1993; 55: 364–79

    PubMed  CAS  Google Scholar 

  154. Pariante CM, Carpianello B, Orru MG, et al. Chronic caregiving stress alters peripheral blood immune parameters: the role of age and severity of stress. Psychother Psychosom 1997; 66: 199–207

    Article  PubMed  CAS  Google Scholar 

  155. Mills PJ, Yu H, Ziegler MG, et al. Vulnerable caregivers of patients with Alzheimer’s disease have a deficit in circulating CD62L- T lymphocytes. Psychosom Med 1999; 61: 168–74

    PubMed  CAS  Google Scholar 

  156. Shephard RJ, Shek PN. Immune dysfunction as a factor in heat illness. Crit Rev Immunol 1999; 19: 285–302

    PubMed  CAS  Google Scholar 

  157. Hammami MM, Bouchama A, Shail E, et al. Lymphocyte subsets and adhesion molecules expression in heatstroke and heat stress. J Appl Physiol 1998; 84: 1615–21

    PubMed  CAS  Google Scholar 

  158. Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med 1999; 340: 115–26

    Article  PubMed  CAS  Google Scholar 

  159. Bell D, Jackson M, Nicoll JJ, et al. Inflammatory response, neutrophil activation and free radical production after acute myocardial infarction: effect of thrombolytic treatment. Br Heart J 1990; 63: 82–7

    Article  PubMed  CAS  Google Scholar 

  160. Geppert A, Zorn G, Karth GD, et al. Soluble selectins and the systemic inflammatory response syndrome after successful cardiopulmonary resuscitation. Crit Care Med 2000; 28: 2360–5

    Article  PubMed  CAS  Google Scholar 

  161. Jakob SM, Ensinger H, Takala J. Metabolic changes after cardiac surgery. Curr Opin Clin Nutr Metab Care 2001; 4: 149–55

    Article  PubMed  CAS  Google Scholar 

  162. Martin HE. Physiological leukocytosis: the variation in leukocyte count during rest and exercise and after hypodermic injection of adrenaline. J Physiol 1932; 75: 113–29

    PubMed  CAS  Google Scholar 

  163. Tønnesen E, Christensen NJ, Brinkløv MM. Natural killer cell activity during Cortisol and adrenaline infusion in healthy volunteers. Eur J Clin Invest 1987; 17: 497–503

    Article  PubMed  Google Scholar 

  164. Pedersen BK, Kappel M, Klokker M. Possible role of stress hormones in exercise-induced immunomodulation. In: Pedersen BK, editor. Exercise immunology. Austin (TX): Landes Bioscience, 1997: 39–60

    Google Scholar 

  165. Schedlowski M, Falk A, Rohne A, et al. Catecholamines induce alterations of distribution and activity of human natural killer (NK) cells. J Clin Immunol 1993; 13: 344–51

    Article  PubMed  CAS  Google Scholar 

  166. Carlson SL, Fox S, Abell KM. Catecholamine modulation of lymphocyte homing to lymphoid tissue. Brain Behav Immun 1997; 11: 307–20

    Article  PubMed  CAS  Google Scholar 

  167. Mills PJ, Karnik RS, Dillon E. L-selectin expression affects T-cell circulation following isoprotorenol infusion in humans. Brain Behav Immun 1997; 11: 333–42

    Article  PubMed  CAS  Google Scholar 

  168. Tvede N, Kappel M, Klarlund K, et al. Evidence that the effect of bicycle exercise on blood mononuclear cell proliferative responses and subsets is mediated by epinephrine. Int J Sports Med 1994; 15: 100–4

    Article  PubMed  CAS  Google Scholar 

  169. Maisel AS, Motulsky HJ. Receptor distribution does not accompany terbutaline-induced down regulation of beta-adrenergic receptors on human mononuclear leukocytes. Clin Pharmacol Ther 1987; 42: 100–6

    Article  PubMed  CAS  Google Scholar 

  170. Maisel AS, Harris T, Rearden CA, et al. β-adrenergic receptors in lymphocyte subsets after exercise: alterations in normal individuals and patients with congestive heart failure. Circulation 1990; 83: 2003–10

    Article  Google Scholar 

  171. Fraser J, Nadau J, Robertson D, et al. Regulation of human leukocyte beta receptors by endogenous catecholamines: relationship of leukocyte beta receptor density to the cardiac sensitivity to isoproterenol. J Clin Invest 1981; 67: 1777–84

    Article  PubMed  CAS  Google Scholar 

  172. Ahlborg B, Ahlborg G. Exercise leukocytosis with and without beta-adrenergic blockade. Acta Med Scand 1970; 187: 241–6

    Article  PubMed  CAS  Google Scholar 

  173. Steppich B, Dayyani F, Graber R, et al. Selective mobilization of CD14(+)CD16(+) monocytes by exercise. Am J Physiol 2000; 279: C578–86

    CAS  Google Scholar 

  174. Maisel AS, Murray D, Lotz M, et al. Propranolol treatment affects parameters of human immunity. Immunopharmacol 1991; 22: 157–64

    Article  CAS  Google Scholar 

  175. Gabriel H, Urhausen A, Brechtel L, et al. Alterations of regular and mature monocytes are distinct and dependent of intensity and duration of exercise. Eur J Appl Physiol 1994; 69: 179–81

    Article  CAS  Google Scholar 

  176. Frankenberger M, Sternsdorf T, Pechumer H, et al. Differential cytokine expression in human blood monocyte subpopulations: a polymerase chain reaction analysis. Blood 1996; 87: 373–7

    PubMed  CAS  Google Scholar 

  177. Zeigler-Heitbrook HWL. Heterogeneity of human blood monocytes: the CD14+CD16+ subpopulation. Immunol Today 1996; 17: 424–8

    Article  Google Scholar 

  178. Watson RS, Moriguchi S, Jackson JC, et al. Modification of cellular immune function in humans by endurance exercise training during β-adrenergic blockade with atenolol or propranolol. Med Sci Sports Exerc 1986; 18: 95–100

    PubMed  CAS  Google Scholar 

  179. Kuhlwein EC, Irwin MR, Ziegler MG, et al. Propranolol affects stress-induced leukocytosis and cellular adhesion molecule expression. Eur J Appl Physiol 2001; 86: 135–41

    Article  PubMed  CAS  Google Scholar 

  180. Mills PJ, Rehman J, Ziegler MG, et al. Nonselective beta blockade attenuates the recruitment of CD62L(-) T lymphocytes. Eur J Appl Physiol 1999; 79: 531–4

    Article  CAS  Google Scholar 

  181. Price TH, Ochs HD, Gershoni-Baruch R, et al. In vivo neutrophil and lymphocyte function studies in a patient with leukocyte adhesion deficiency type II. Blood 1994; 84: 1635–9

    PubMed  CAS  Google Scholar 

  182. Tang ML, Steeber DA, Zhang XQ, et al. Intrinsic differences in L-selectin expression levels affect T and B lymphocyte subset-specific recirculation pathways. J Immunol 1998; 160: 5113–21

    PubMed  CAS  Google Scholar 

  183. Stewart IB, McKenzie DM. The human spleen during physiological stress. Sports Med 2002; 32: 361–9

    Article  PubMed  Google Scholar 

  184. Stewart IB, Warburton DE, Hodges ANH, et al. Splenic contraction, catecholamine release, and blood volume redistribution during exercise in man. Med Sci Sports Exerc 2002; 34: S20

    Google Scholar 

  185. Nielsen HB, Secher NH, Kristensen JH, et al. Splenectomy impairs lymphocytosis during maximal exercise. Am J Physiol 1997; 272: R1847–52

    PubMed  CAS  Google Scholar 

  186. Steel CM, French EB, Aitchison WR. Studies on adrenaline-induced leucocytosis in normal man: I. the role of the spleen and of the thoracic duct. Br J Haematol 1971; 21: 413–21

    Article  PubMed  CAS  Google Scholar 

  187. Bellinger DL, Ackerman KD, Feiten SY, et al. A longitudinal study of age-related loss of noradrenergic nerves and lymphoid cells in the rat spleen. Exp Neurol 1992; 116: 295–311

    Article  PubMed  CAS  Google Scholar 

  188. Bulloch K, Radojcic T. Characterization of muscarinic acetyl choline and beta-adrenergic receptors on fresh and cloned immunocytes. In: Hadden JW, Masek K, Nistico G, editors. Interactions among CNS neuroendocrine and immune systems. Rome: Pythagora Press, 1989: 17–34

    Google Scholar 

  189. Iversen PO, Arvesen BL, Benestad HB. No mandatory role for the spleen in the exercise-induced leucocytosis in man. Clin Sci 1994; 89: 505–10

    Google Scholar 

  190. Klokker M, Mohr T, Kjaer M, et al. The natural killer cell response to exercise in spinal cord injured individuals. Eur J Appl Physiol 1998; 79: 106–9

    Article  CAS  Google Scholar 

  191. Athens JW, Haab OP, Raab SO, et al. Leukokinetic studies: IV. the total blood, circulating and marginal granulocyte pools and the granulocyte turnover rate in normal subjects. J Clin Invest 1961; 40: 989–95

    Article  PubMed  CAS  Google Scholar 

  192. Benschop RJ, Nijkamp FP, Ballieux RE, et al. The effects of β-adrenoceptor stimulation on adhesion of human natural killer cells to cultured endothelium. Br J Pharmacol 1994; 113: 1311–6

    Article  PubMed  CAS  Google Scholar 

  193. Boxer LA, Allen JM, Baehner RL. Diminished polymorphonuclear leukocyte adherence: function dependent on release of cyclic AMP by endothelial cells after stimulation of β receptors by epinephrine. J Clin Invest 1980; 66: 268–74

    Article  PubMed  CAS  Google Scholar 

  194. Rainer TH, Lam N, Cocks RA. Adrenaline upregulates monocyte L-selectin in vitro. Resuscitation 1999; 43: 47–55

    Article  PubMed  CAS  Google Scholar 

  195. Whiss PA, Andersson RG, Srinivas U. Modulation of P-selectin expression on isolated human platelets by an NO donor assessed by a novel ELISA application. J Immunol Methods 1997; 200: 135–43

    Article  PubMed  CAS  Google Scholar 

  196. Sung CP, Arleth AJ, Storer B, et al. Modulation of U937 cell adhesion to vascular endothelial cells by cyclic AMP. Life Sci 1991; 49: 375–82

    Article  PubMed  CAS  Google Scholar 

  197. Ballestas ME, Benveniste EN. Elevation of cyclic AMP levels in astrocytes antagonizes cytokine-induced adhesion molecule expression. J Neurochem 1997; 69: 1438–48

    Article  PubMed  CAS  Google Scholar 

  198. Demerath E, Towne B, Blangero J, et al. The relationship of soluble ICAM-1, VCAM-1, P-selectin and E-selectin to cardiovascular disease risk factors in healthy men and women. Ann Hum Biol 2001; 28: 664–78

    Article  PubMed  CAS  Google Scholar 

  199. Mehta A, Yang B, Khan S, et al. Oxidized low-density lipoproteins facilitate leukocyte adhesion to aortic intima without affecting endothelium-dependent relaxation. Arterioscler Thromb Vasc Biol 1995; 15: 2076–83

    Article  PubMed  CAS  Google Scholar 

  200. Chen LY, Nichols WW, Hendricks JB, et al. Monoclonal antibody to P-selectin (PB13) protects against myocardial reperfusion injury in the dog. Cardiovasc Res 1994; 28: 1414–22

    Article  PubMed  CAS  Google Scholar 

  201. Weyrich AS, Ma XY, Lefer DJ, et al. In vivo neutralization of P-selectin protects feline heart and endothelium in myocardial ischemia and reperfusion injury. J Clin Invest 1993; 91: 2620–9

    Article  PubMed  CAS  Google Scholar 

  202. Lehr HA, Krober M, Hubner C, et al. Stimulation of leukocyte/ endothelium interaction by oxidized low-density lipoprotein in hairless mice: involvement of CD1 lb/CD18 adhesion receptor complex. Lab Invest 1993; 68: 388–95

    PubMed  CAS  Google Scholar 

  203. Lehr HA, Olofsson AM, Carew TA, et al. P-selectin mediates the interaction of circulating leukocytes with platelets and microvascular endothelium in response to oxidized lipoprotein in vivo. Lab Invest 1994; 71: 380–6

    PubMed  CAS  Google Scholar 

  204. Bath PMW, Hassall DG, Gladwin A-M, et al. Nitric oxide and prostacyclin: divergence of inhibitory effects on monocyte chemotaxis and adhesion to endothelium in vitro. Arterioscler Thromb 1991; 11: 254–60

    Article  PubMed  CAS  Google Scholar 

  205. Liao LX, Granger DN. Modulation of oxidized low density lipoprotein-induced microvascular dysfunction by nitric oxide. Am J Physiol 1995; 268: H1643–50

    PubMed  CAS  Google Scholar 

  206. Kurose I, Wolf R, Grisham MB, et al. Modulation of ischemiareperfusion microvascular dysfunction by nitric oxide. Circ Res 1994; 74: 376–82

    Article  PubMed  CAS  Google Scholar 

  207. Furman MI, Benoit SE, Barnard MR, et al. Increased platelet reactivity and circulating monocyte-platelet aggregates in patients with stable coronary artery disease. J Am Coll Cardiol 1998; 31: 352–8

    Article  PubMed  CAS  Google Scholar 

  208. Sluiter W, Pietersma A, Lamers JM, et al. Leukocyte adhesion molecules on the vascular endothelium: their role in the pathogenesis of cardiovascular disease, and the mechanisms underlying their expression. J Cardiovasc Pharmacol 1993; 22Suppl. 4: S37–44

    Article  PubMed  CAS  Google Scholar 

  209. Siminiak T, Smielecki J, Dye JF, et al. Increased release of the soluble form of the adhesion molecules L-selectin and ICAM-1 but not E-selectin during attacks of angina. Heart Vessels 1998; 13: 189–94

    Article  PubMed  CAS  Google Scholar 

  210. Ikeda H, Takajo Y, Ichiki K, et al. Increased soluble form of P-selectin in patients with unstable angina. Circulation 1995; 92: 1693–6

    Article  PubMed  CAS  Google Scholar 

  211. Meisel SR, Shapiro H, Radnay J, et al. Increased expression of neutrophil and monocyte adhesion molecules LFA-1 and Mac-1 and their ligand ICAM-1 and VLA-4 throughout the acute phase of myocardial infarction: possible implications for leukocyte aggregation and microvascular plugging. J Am Coll Cardiol 1998; 31: 120–5

    Article  PubMed  CAS  Google Scholar 

  212. Ciuffetti G, Paltriccia R, Lombardini R, et al. Treating peripheral arterial occlusive disease: pentoxifylline vs exercise. Int Angiol 1994; 13: 33–9

    PubMed  CAS  Google Scholar 

  213. Signorelli SS, Malaponte G, Di Pino L, et al. Effects of ischaemic stress on leukocyte activation processes in patients with chronic peripheral occlusive arterial disease: role of L-propionyl carnitine administration. Pharmacol Res 2001; 44: 305–9

    Article  PubMed  CAS  Google Scholar 

  214. Brevetti G, De Caterina M, Martone VD, et al. Exercise increases soluble adhesion molecules ICAM-1 and VCAM-1 in patients with intermittent claudication. Clin Hemorheol Microcirc 2001; 24: 193–9

    PubMed  CAS  Google Scholar 

  215. Ciuffett G, Lombardini R, Paltriccia R, et al. Human leucocyte- endothelial interactions in peripheral arterial occlusive disease. Eur J Clin Invest 1994; 24: 65–8

    Article  Google Scholar 

  216. Nawaz S, Walker RD, Wilkinson CH, et al. The inflammatory response to upper and lower limb exercise and the effects of exercise training in patients with claudication. J Vasc Surg 2001; 33: 392–9

    Article  PubMed  CAS  Google Scholar 

  217. Arioso E, Minuz P, Prior M, et al. Vascular adhesion molecule-1 and markers of platelet function before and after a treatment with iloprost or a supervised exercise program in patients with peripheral arterial disease. Life Sci 2001; 69: 421–33

    Article  Google Scholar 

  218. Adamopoulos S, Parissis J, Kroupis C, et al. Physical training reduces peripheral markers of inflammation in patients with chronic heart failure. Eur Heart J 2001; 22: 791–7

    Article  PubMed  CAS  Google Scholar 

  219. Nieman DC. Exercise and resistance to infection. Can J Physiol Pharmacol 1998; 76: 573–80

    Article  PubMed  CAS  Google Scholar 

  220. Brenner IKM, Shek PN, Shephard RJ. Infection in athletes. Sports Med 1994; 17: 86–107

    Article  PubMed  CAS  Google Scholar 

  221. Shephard RJ, Shek PN. Exercise, immunity, and susceptibility to infection. Phys Sportsmed 1999; 27(6): 47–71

    Article  PubMed  CAS  Google Scholar 

  222. Baum M, Liesen H, Enneper J. Leukocytes, lymphocytes, activation and cell adhesion molecules in middle-distance runners under different training conditions. Int J Sports Med 1994; 15: S122–6

    Article  PubMed  Google Scholar 

  223. Rundell KW, Wilber RL, Lemanske RF. Exercise-induced asthma: pathophysiology and treatment. Champaign (IL): Human Kinetics Publishers, 2002

    Google Scholar 

  224. Bottomly K. A functional dichotomy in CD4+ T lymphocytes. Immunol Today 1988; 9: 268–74

    Article  PubMed  CAS  Google Scholar 

  225. Sfikakis PP, Charalambopoulos D, Vaiopoulos G, et al. Circulating P- and L-selectin and T-lymphocyte activation and patients with autoimmune rheumatic diseases. Clin Rheumatol 1999; 18: 28–32

    Article  PubMed  CAS  Google Scholar 

  226. Ardehali A, Laks H, Drinkwater DC, et al. Vascular cell adhesion molecule-1 is induced on vascular endothelium and medial smooth muscle cells in experimental cardiac allograft vasculopathy. Circulation 1995; 92: 450–6

    Article  PubMed  CAS  Google Scholar 

  227. Harrison PC, Madweed JB. Anti-LFA-1 alpha reduces the dose of cyclosporin A needed to produce immunosuppression in heterotopic cardiac transplanted rats. J Heart Lung Transplant 1999; 18: 279–84

    Article  PubMed  CAS  Google Scholar 

  228. Hoffman-Goetz L, MacNeil B, Arumugam Y. Tissue distribution of radiolabelled tumor cells in wheel exercised and sedentary mice. Int J Sports Med 1993; 15: 249–53

    Article  Google Scholar 

  229. Shephard RJ, Futcher R. Physical activity and cancer: how may protection be maximized? Crit Rev Oncog 1997; 8: 219–72

    Article  PubMed  CAS  Google Scholar 

  230. Gabriel H, Schmitt B, Urhausen A, et al. Adhäsions-molekül LFA-1 auf der Zelloberfläche von Lymphozytensubpopulationen während und nach akuter körperlicher Belastung (Adhesion molecule LFA-1 on the cell surface of lymphocyte subpopulations during and after body work). Dtsche Z Sportmed 1993; 44: 436–40

    CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this manuscript. The author has no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy J. Shephard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shephard, R.J. Adhesion Molecules, Catecholamines and Leucocyte Redistribution During and Following Exercise. Sports Med 33, 261–284 (2003). https://doi.org/10.2165/00007256-200333040-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200333040-00002

Keywords

Navigation