Skip to main content
Log in

Monoclonal Antibodies Targeting Vascular Endothelial Growth Factor

Current Status and Future Challenges in Cancer Therapy

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

The use of monoclonal antibodies targeting the vascular endothelial growth factor (VEGF) pathway has been a significant addition to cancer therapy. One of the VEGF family members, VEGF-A (commonly referred to as VEGF), has been demonstrated to be important in angiogenesis. Although the mechanism of action of these antibodies is still under study, the anti-VEGF antibody bevacizumab has been approved for treatment of various solid cancers including colorectal, lung, and breast cancers as well as glioblastoma and renal cell carcinoma. Addition of bevacizumab to chemotherapy as adjuvant therapy in colorectal cancer did not improve disease-free survival. Bevacizumab is being tested in other clinical settings such as adjuvant therapy, maintenance therapy, and in combination with both chemotherapy and other targeted agents such as the epidermal growth factor receptor kinase inhibitor erlotinib. In addition to bevacizumab, other antibody-based therapies targeting the VEGF pathway are being tested. Ramucirumab and IMC-18F1 are monoclonal antibodies that target the VEGF receptors VEGFR-2 and VEGFR-1, respectively. Aflibercept (VEGF-Trap), a peptide-antibody fusion targeting VEGF ligand, is being tested in clinical trials. Much research is focused on identifying biomarkers to predict which patients will benefit from anti-VEGF therapy. Recent results suggest that VEGF single nucleotide polymorphisms may be predictive of patient response to bevacizumab. Improved imaging modalities such as dynamic contrast-enhanced MRI (DCE-MRI) can better characterize the efficacy of anti-angiogenic agents. As anti-VEGF treatments such as bevacizumab have been integrated into the treatment of many different types of cancers, the development of bevacizumab-resistant tumors has become more common. Recent studies show that targeting other angiogenesis signaling pathways such as platelet-derived growth factor-C (PDGF-C), Bombina variagata peptide 8 (Bv8, also known as prokineticin-2), and VEGFR-3 may lead to enhanced response in anti-VEGF resistant tumors. In the future, tailored treatments consisting of combinations of chemotherapy, other targeted therapies, and anti-angiogenesis agents will hopefully result in better patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II

Similar content being viewed by others

References

  1. Ferrara N. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2002 Oct; 2(10): 795–803

    Article  PubMed  CAS  Google Scholar 

  2. Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 2005 Feb 10; 23(5): 1011–27

    Article  PubMed  CAS  Google Scholar 

  3. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003 Jun; 9(6): 669–76

    Article  PubMed  CAS  Google Scholar 

  4. Ellis LM, Hicklin DJ. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer 2008 Aug; 8(8): 579–91

    Article  PubMed  CAS  Google Scholar 

  5. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000 Sep 14; 407(6801): 249–57

    Article  PubMed  CAS  Google Scholar 

  6. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004 Jun 3; 350(23): 2335–42

    Article  PubMed  CAS  Google Scholar 

  7. Saltz LB, Clarke S, Diaz-Rubio E, et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol 2008 Apr 20; 26(12): 2013–9

    Article  PubMed  CAS  Google Scholar 

  8. Giantonio BJ, Catalano PJ, Meropol NJ, et al. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J Clin Oncol 2007 Apr 20; 25(12): 1539–44

    Article  PubMed  CAS  Google Scholar 

  9. Wolmark N, Yothers G, O'Connell M, et al. A phase III trial comparing mFOLFOX6 to mFOLFOX6 plus bevacizumab in stage II or III carcinoma of the colon: results of NSABP Protocol C-08 [abstract LBA4]. J Clin Oncol 2009; 27 (18 Suppl.): 793s

    Google Scholar 

  10. Sandler A, Gray R, Perry MC, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 2006 Dec 14; 355(24): 2542–50

    Article  PubMed  CAS  Google Scholar 

  11. Reck M, Von Pawel J, Zatloukal P, et al. Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAiL. J Clin Oncol 2009 Feb 2; 27(8): 1227–34

    Article  PubMed  CAS  Google Scholar 

  12. Jones D. Avastin-Tarceva combination fails in lung cancer. Nat Biotechnol 2009 Feb; 27(2): 108–9

    Article  PubMed  CAS  Google Scholar 

  13. Miller VA, O'Connor P, Soh C, et al. A randomized, double-blind, placebo-controlled, phase IIIb trial (ATLAS) comparing bevacizumab (B) therapy with or without erlotinib (E) after completion of chemotherapy with B for first-line treatment of locally advanced, recurrent, or metastatic non-small cell lung cancer (NSCLC) [abstract LBA8002]. American Society of Clinical Oncology (ASCO) Annual Meeting 2009; 2009 May 29–Jun 2; Orlando (FL)

  14. Miller K, Wang M, Gralow J, et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 2007 Dec 27; 357(26): 2666–76

    Article  PubMed  CAS  Google Scholar 

  15. Miles D, Chan A, Romieu G, et al. Randomized, double-blind, placebo-controlled, phase III study of bevacizumab with docetaxel or docetaxel with placebo as first-line therapy for patients with locally recurrent or metastatic breast cancer (mBC): AVADO [abstract LBA1011]. American Society of Clinical Oncology (ASCO) Annual Meeting 2008; 2008 May 30–Jun 3; Chicago (IL)

  16. Robert NJ, Dieras V, Glaspy J, et al. RIBBON-1: Randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab (B) for first-line treatment of HER2-negative locally recurrent or metastatic breast cancer (MBC) [abstract 1005]. J Clin Oncol 2009; 27 (15 Suppl.): 42s

    Article  Google Scholar 

  17. Clinicaltrials.gov. A study to evaluate the safety and efficacy of bevacizumab in combination with chemotherapy in previously treated metastatic breast cancer (RIBBON 2) [online]. Available from URL: http://clinicaltrials.gov/ct2/show/NCT00281697?term=NCT00281697&rank=1 [Accessed 2009 Aug 12]

  18. Miller KD, Chap LI, Holmes FA, et al. Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol 2005 Feb 1; 23(4): 792–9

    Article  PubMed  CAS  Google Scholar 

  19. Escudier B, Pluzanska A, Koralewski P, et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet 2007 Dec 22; 370(9605): 2103–11

    Article  PubMed  Google Scholar 

  20. Rini BI, Halabi S, Rosenberg JE, et al. Bevacizumab plus interferon alfa compared with interferon alfa monotherapy in patients with metastatic renal cell carcinoma: CALGB 90206. J Clin Oncol 2008 Nov 20; 26(33): 5422–8

    Article  PubMed  CAS  Google Scholar 

  21. Kindler HL, Niedzwiecki D, Hollis D, et al. A double-blind, placebo-controlled, randomized phase III trial of gemcitabine (G) plus bevacizumab (B) versus gemcitabine plus placebo (P) in patients (pts) with advanced pancreatic cancer (PC): a preliminary analysis of Cancer and Leukemia Group B (CALGB) [abstract 4508]. J Clin Oncol 2007; 25 (18 Suppl.): 4508

    Google Scholar 

  22. Kabbinavar F, Hurwitz HI, Fehrenbacher L, et al. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol 2003 Jan 1; 21(1): 60–5

    Article  PubMed  CAS  Google Scholar 

  23. Tol J, Koopman M, Cats A, et al. Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med 2009 Feb 5; 360(6): 563–72

    Article  PubMed  CAS  Google Scholar 

  24. Scartozzi M, Galizia E, Chiorrini S, et al. Arterial hypertension correlates with clinical outcome in colorectal cancer patients treated with first-line bevacizumab. Ann Oncol 2009 Feb; 20(2): 227–30

    Article  PubMed  CAS  Google Scholar 

  25. Hecht JR, Mitchell E, Chidiac T, et al. A randomized phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J Clin Oncol 2009 Feb 10; 27(5): 672–80

    Article  PubMed  CAS  Google Scholar 

  26. Saltz LB, Lenz HJ, Kindler HL, et al. Randomized phase II trial of cetuximab, bevacizumab, and irinotecan compared with cetuximab and bevacizumab alone in irinotecan-refractory colorectal cancer: the BOND-2 study. J Clin Oncol 2007 Oct 10; 25(29): 4557–61

    Article  PubMed  CAS  Google Scholar 

  27. Allegra CJ, Yothers G, O'Connell MJ, et al. Initial safety report of NSABP C-08: a randomized phase III study of modified FOLFOX6 with or without bevacizumab for the adjuvant treatment of patients with stage II or III colon cancer. J Clin Oncol 2009 May 4; 27(20): 3385–90

    Article  PubMed  CAS  Google Scholar 

  28. Johnson DH, Fehrenbacher L, Novotny WF, et al. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol 2004 Jun 1; 22(11): 2184–91

    Article  PubMed  CAS  Google Scholar 

  29. Hainsworth J, Herbst RS. A phase III, multicenter, placebo-controlled, double-blind, randomized clinical trial to evaluate the efficacy of bevacizumab in combination with erlotinib compared with erlotinib alone for treatment of advanced non-small cell lung cancer after failure of standard first-line therapy (BeTa) [abstract]. J Thorac Oncol 2008; 3(11): S302

    Google Scholar 

  30. Ramalingam SS, Dahlberg SE, Langer CJ, et al. Outcomes for elderly, advanced-stage non small-cell lung cancer patients treated with bevacizumab in combination with carboplatin and paclitaxel: analysis of Eastern Cooperative Oncology Group Trial 4599. J Clin Oncol 2008 Jan 1; 26(1): 60–5

    Article  PubMed  CAS  Google Scholar 

  31. Wakelee HA, Dahlberg SE, Brahmer JR, et al. Increased benefit from bevacizumab (BEV) in younger women with advanced NSCLC on Eastern Cooperative Oncology Group (ECOG) 4599 [abstract]. J Thorac Oncol 2008; 3(11): S282

    Google Scholar 

  32. Lynch T, Brahmer J, Fischbach N, et al. Preliminary treatment patterns and safety outcomes for non-small cell lung cancer (NSCLC) from ARIES, a bevacizumab treatment observational cohort study (OCS) [abstract 8077]. American Society of Clinical Oncology (ASCO) Annual Meeting 2008; 2008 May 30–Jun 3; Chicago (IL)

  33. Kreisl TN, Kim L, Moore K, et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 2008 Dec 29; 27(5): 740–5

    Article  PubMed  Google Scholar 

  34. A study to evaluate bevacizumab alone or in combination with irinotecan for treatment of glioblastoma multiforme (BRAIN) [online]. Available from URL: http://clinicaltrials.gov/ct2/show/NCT00345163 [Accessed 2009 Aug 12]

  35. US FDA. Bevacizumab injection [online]. Available from URL: http://www.fda.gov/AboutFDA/CentersOffices/CDER/ucm149364.htm [Accessed 2009 Aug 12]

  36. Kamoun WS, Ley CD, Farrar CT, et al. Edema control by cediranib, a vascular endothelial growth factor receptor-targeted kinase inhibitor, prolongs survival despite persistent brain tumor growth in mice. J Clin Oncol 2009 May 20; 27(15): 2542–52

    Article  PubMed  CAS  Google Scholar 

  37. Yang JC, Haworth L, Sherry RM, et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 2003 Jul 31; 349(5): 427–34

    Article  PubMed  CAS  Google Scholar 

  38. Escudier B, Bellmunt J, Negrier S, et al. Final results of the phase III, randomized, double-blind AVOREN trial of first-line bevacizumab (BEV) +interferon-α2a (IFN) in metastatic renal cell carcinoma (mRCC) [abstract 5020]. J Clin Oncol 2009; 27 (15 Suppl.): 239s

    Article  Google Scholar 

  39. Rini BI, Halabi S, Rosenberg JE, et al. Bevacizumab plus interferon-alpha versus interferon-alpha monotherapy in patients with metastatic renal cell carcinoma: results of overall survival for CALGB 90206 [abstract LBA5019]. J Clin Oncol 2009; 27 (18 Suppl.): 798s

    Google Scholar 

  40. National Cancer Institute. FDA approval for bevacizumab [online]. Available from URL: http://www.cancer.gov/cancertopics/druginfo/fda-bevacizumab [Accessed 2009 Aug 31]

  41. Karrison T, Kindler HL, Gandara DR, et al. Final analysis of a multi-center, double-blind, placebo-controlled, randomized phase II trial of gemcitabine/cisplatin (GC) plus bevacizumab (B) or placebo (P) in patients (pts) with malignant mesothelioma (MM) [abstract 7526]. J Clin Oncol 2007; 25 (18 Suppl.): 7526

    Google Scholar 

  42. Jackman DM, Kindler HL, Yeap BY, et al. Erlotinib plus bevacizumab in previously treated patients with malignant pleural mesothelioma. Cancer 2008 Aug 15; 113(4): 808–14

    Article  PubMed  CAS  Google Scholar 

  43. Griesinger F, Laskin JJ, Pavlakis N. Safety of first-line bevacizumab-based therapy with concomitant cardiovascular or anticoagulation medication in advanced or recurrent non-squamous non-small cell lung cancer (NSCLC) in MO19390 (SAiL) [abstract 8049]. American Society of Clinical Oncology (ASCO) Annual Meeting 2008; 2008 May 30–Jun 3; Chicago (IL)

  44. Akerley WL, Langer C, Oh Y, et al. Acceptable safety of bevacizumab therapy in patients with brain metastases due to non-small cell lung cancer [abstract 8043]. American Society of Clinical Oncology (ASCO) Annual Meeting 2008; 2008 May 30–Jun 3; Chicago (IL)

  45. Sandler AB, Schiller JH, Gray R, et al. Retrospective evaluation of the clinical and radiographic risk factors associated with severe pulmonary hemorrhage in first-line advanced, unresectable non-small-cell lung cancer treated with carboplatin and paclitaxel plus bevacizumab. J Clin Oncol 2009 Mar 20; 27(9): 1405–12

    Article  PubMed  CAS  Google Scholar 

  46. Van Cutsem E, Rivera F, Berry S, et al. Safety and efficacy of first-line bevacizumab with FOLFOX, XELOX, FOLFIRI and fluoropyrimidines in metastatic colorectal cancer: the BEAT study. Ann Oncol 2009; 20Suppl. 4: 61–3

    PubMed  Google Scholar 

  47. Thomas MB, Morris JS, Chadha R, et al. Phase II trial of the combination of bevacizumab and erlotinib in patients who have advanced hepatocellular carcinoma. J Clin Oncol 2009 Jan 12; 27(6): 843–50

    Article  PubMed  CAS  Google Scholar 

  48. Sessa C, Guibal A, Del Conte G, et al. Biomarkers of angiogenesis for the development of antiangiogenic therapies in oncology: tools or decorations? Nat Clin Pract Oncol 2008 Jul; 5(7): 378–91

    Article  PubMed  CAS  Google Scholar 

  49. Krupitskaya Y, Wakelee HA. Ramucirumab, a fully human mAb to the transmembrane signaling tyrosine kinase VEGFR-2 for the potential treatment of cancer. Curr Opin Investig Drugs 2009 Jun; 10(6): 597–605

    PubMed  CAS  Google Scholar 

  50. Spratlin JL, Gore L, Camidge DR, et al. A phase I, pharmacological and biological study of weekly IMC-1121B, a recombinant human IgG 1 monoclonal antibody (MAb), targeting vascular endothelial growth factor receptor 2 (VEGFR-2), in patients (pts) with advanced solid tumors [abstract A33]. AACR-NCI-EORTC International Conference; 2007 Oct 22; San Francisco (CA)

  51. Wu Y, Zhong Z, Huber J, et al. Anti-vascular endothelial growth factor receptor-1 antagonist antibody as a therapeutic agent for cancer. Clin Cancer Res 2006 Nov 1; 12(21): 6573–84

    Article  PubMed  CAS  Google Scholar 

  52. Schneider BP, Wang M, Radovich M, et al. Association of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 genetic polymorphisms with outcome in a trial of paclitaxel compared with paclitaxel plus bevacizumab in advanced breast cancer: ECOG 2100. J Clin Oncol 2008 Oct 1; 26(28): 4672–8

    Article  PubMed  CAS  Google Scholar 

  53. Azad NS, Posadas EM, Kwitkowski VE, et al. Combination targeted therapy with sorafenib and bevacizumab results in enhanced toxicity and antitumor activity. J Clin Oncol 2008 Aug 1; 26(22): 3709–14

    Article  PubMed  CAS  Google Scholar 

  54. Cannistra SA. Challenges and pitfalls of combining targeted agents in phase I studies. J Clin Oncol 2008 Aug 1; 26(22): 3665–7

    Article  PubMed  CAS  Google Scholar 

  55. Lievre A, Bachet JB, Boige V, et al. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol 2008 Jan 20; 26(3): 374–9

    Article  PubMed  CAS  Google Scholar 

  56. Tappenden P, Jones R, Paisley S, et al. The cost-effectiveness of bevacizumab in the first-line treatment of metastatic colorectal cancer in England and Wales. Eur J Cancer 2007 Nov; 43(17): 2487–94

    Article  PubMed  CAS  Google Scholar 

  57. Siegel AB, Cohen EI, Ocean A, et al. Phase II trial evaluating the clinical and biologic effects of bevacizumab in unresectable hepatocellular carcinoma. J Clin Oncol 2008 Jun 20; 26(18): 2992–8

    Article  PubMed  CAS  Google Scholar 

  58. Thomas AL, Morgan B, Horsfield MA, et al. Phase I study of the safety, tolerability, pharmacokinetics, and pharmacodynamics of PTK787/ZK 222584 administered twice daily in patients with advanced cancer. J Clin Oncol 2005 Jun 20; 23(18): 4162–71

    Article  PubMed  CAS  Google Scholar 

  59. Chen W, Delaloye S, Silverman DH, et al. Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: a pilot study. J Clin Oncol 2007 Oct 20; 25(30): 4714–21

    Article  PubMed  CAS  Google Scholar 

  60. Longo R, Gasparini G. Challenges for patient selection with VEGF inhibitors. Cancer Chemother Pharmacol 2007 Jul; 60(2): 151–70

    Article  PubMed  CAS  Google Scholar 

  61. Longo R, Gasparini G. Anti-VEGF therapy: the search for clinical biomarkers. Expert Rev Mol Diagn 2008 May; 8(3): 301–14

    Article  PubMed  CAS  Google Scholar 

  62. Jubb AM, Hurwitz HI, Bai W, et al. Impact of vascular endothelial growth factor-A expression, thrombospondin-2 expression, and microvessel density on the treatment effect of bevacizumab in metastatic colorectal cancer. J Clin Oncol 2006 Jan 10; 24(2): 217–27

    Article  PubMed  CAS  Google Scholar 

  63. Ince WL, Jubb AM, Holden SN, et al. Association of k-ras, b-raf, and p53 status with the treatment effect of bevacizumab. J Natl Cancer Inst 2005 Jul 6; 97(13): 981–9

    Article  PubMed  CAS  Google Scholar 

  64. Dowlati A, Gray R, Sandler AB, et al. Cell adhesion molecules, vascular endothelial growth factor, and basic fibroblast growth factor in patients with non-small cell lung cancer treated with chemotherapy with or without bevacizumab: an Eastern Cooperative Oncology Group Study. Clin Cancer Res 2008 Mar 1; 14(5): 1407–12

    Article  PubMed  CAS  Google Scholar 

  65. Zhang W, Dahlberg SE, Yang D, et al. Genetic variants in angiogenesis pathway associated with clinical outcome in NSCLC patients (pts) treated with bevacizumab in combination with carboplatin and paclitaxel: subset pharmacogenetic analysis of ECOG 4599 [abstract 8032]. J Clin Oncol 2009; 27 (15 Suppl.): 414s

    Article  Google Scholar 

  66. Willett CG, Duda DG, di Tomaso E, et al. Efficacy, safety, and biomarkers of neoadjuvant bevacizumab, radiation therapy, and fluorouracil in rectal cancer: a multidisciplinary phase II study. J Clin Oncol 2009; 27(18): 3020–6

    Article  PubMed  CAS  Google Scholar 

  67. Willett CG, Boucher Y, Duda DG, et al. Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for bevacizumab with radiation and chemotherapy: continued experience of a phase I trial in rectal cancer patients. J Clin Oncol 2005 Nov 1; 23(31): 8136–9

    Article  PubMed  Google Scholar 

  68. Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 2008 Aug; 8(8): 592–603

    Article  PubMed  CAS  Google Scholar 

  69. Paez-Ribes M, Allen E, Hudock J, et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 2009 Mar 3; 15(3): 220–31

    Article  PubMed  CAS  Google Scholar 

  70. Ebos JM, Lee CR, Cruz-Munoz W, et al. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 2009 Mar 3; 15(3): 232–9

    Article  PubMed  CAS  Google Scholar 

  71. Crawford Y, Kasman I, Yu L, et al. PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell 2009 Jan 6; 15(1): 21–34

    Article  PubMed  CAS  Google Scholar 

  72. Shojaei F, Wu X, Zhong C, et al. Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 2007 Dec 6; 450(7171): 825–31

    Article  PubMed  CAS  Google Scholar 

  73. Tammela T, Zarkada G, Wallgard E, et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 2008 Jul 31; 454(7204): 656–60

    Article  PubMed  CAS  Google Scholar 

  74. Zhu AX, Sahani DV, Duda DG, et al. Efficacy, safety, and potential biomarkers of sunitinib monotherapy in advanced hepatocellular carcinoma: a phase II study. J Clin Oncol 2009; 27(18): 3027–35

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this review. Jerry Hsu is supported by a Walter and Idun Berry Fellowship. Heather Wakelee receives research support from Genentech, Lilly Oncology, Regeneron, Novartis, Exelixis, and Cell Therapeutics, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather A. Wakelee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, J.Y., Wakelee, H.A. Monoclonal Antibodies Targeting Vascular Endothelial Growth Factor. BioDrugs 23, 289–304 (2009). https://doi.org/10.2165/11317600-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11317600-000000000-00000

Keywords

Navigation