Methyltransferase Dnmt3a upregulates HDAC9 to deacetylate the kinase TBK1 for activation of antiviral innate immunity

Nat Immunol. 2016 Jul;17(7):806-15. doi: 10.1038/ni.3464. Epub 2016 May 30.

Abstract

The DNA methyltransferase Dnmt3a has high expression in terminally differentiated macrophages; however, its role in innate immunity remains unknown. Here we report that deficiency in Dnmt3a selectively impaired the production of type I interferons triggered by pattern-recognition receptors (PRRs), but not that of the proinflammatory cytokines TNF and IL-6. Dnmt3a-deficient mice exhibited enhanced susceptibility to viral challenge. Dnmt3a did not directly regulate the transcription of genes encoding type I interferons; instead, it increased the production of type I interferons through an epigenetic mechanism by maintaining high expression of the histone deacetylase HDAC9. In turn, HDAC9 directly maintained the deacetylation status of the key PRR signaling molecule TBK1 and enhanced its kinase activity. Our data add mechanistic insight into the crosstalk between epigenetic modifications and post-translational modifications in the regulation of PRR signaling and activation of antiviral innate immune responses.

MeSH terms

  • Acetylation
  • Animals
  • DNA (Cytosine-5-)-Methyltransferases / metabolism*
  • DNA Methyltransferase 3A
  • Epigenesis, Genetic
  • HEK293 Cells
  • Histone Deacetylases / genetics
  • Histone Deacetylases / metabolism
  • Humans
  • Immunity, Innate*
  • Interferon Type I / metabolism
  • Macrophages / immunology*
  • Macrophages / virology
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Transgenic
  • Protein Serine-Threonine Kinases / metabolism
  • RAW 264.7 Cells
  • Receptors, Pattern Recognition / metabolism
  • Repressor Proteins / genetics
  • Repressor Proteins / metabolism
  • Rhabdoviridae Infections / immunology*
  • Signal Transduction
  • Vesicular stomatitis Indiana virus / immunology*

Substances

  • DNMT3A protein, human
  • Dnmt3a protein, mouse
  • Interferon Type I
  • Receptors, Pattern Recognition
  • Repressor Proteins
  • DNA (Cytosine-5-)-Methyltransferases
  • DNA Methyltransferase 3A
  • Tbk1 protein, mouse
  • Protein Serine-Threonine Kinases
  • Hdac9 protein, mouse
  • Histone Deacetylases