Stability and function of regulatory T cells expressing the transcription factor T-bet

Nature. 2017 Jun 15;546(7658):421-425. doi: 10.1038/nature22360. Epub 2017 Jun 7.

Abstract

Adaptive immune responses are tailored to different types of pathogens through differentiation of naive CD4 T cells into functionally distinct subsets of effector T cells (T helper 1 (TH1), TH2, and TH17) defined by expression of the key transcription factors T-bet, GATA3, and RORγt, respectively. Regulatory T (Treg) cells comprise a distinct anti-inflammatory lineage specified by the X-linked transcription factor Foxp3 (refs 2, 3). Paradoxically, some activated Treg cells express the aforementioned effector CD4 T cell transcription factors, which have been suggested to provide Treg cells with enhanced suppressive capacity. Whether expression of these factors in Treg cells-as in effector T cells-is indicative of heterogeneity of functionally discrete and stable differentiation states, or conversely may be readily reversible, is unknown. Here we demonstrate that expression of the TH1-associated transcription factor T-bet in mouse Treg cells, induced at steady state and following infection, gradually becomes highly stable even under non-permissive conditions. Loss of function or elimination of T-bet-expressing Treg cells-but not of T-bet expression in Treg cells-resulted in severe TH1 autoimmunity. Conversely, following depletion of T-bet- Treg cells, the remaining T-bet+ cells specifically inhibited TH1 and CD8 T cell activation consistent with their co-localization with T-bet+ effector T cells. These results suggest that T-bet+ Treg cells have an essential immunosuppressive function and indicate that Treg cell functional heterogeneity is a critical feature of immunological tolerance.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Autoimmunity / immunology
  • CD8-Positive T-Lymphocytes / cytology
  • CD8-Positive T-Lymphocytes / immunology
  • Cell Separation
  • Female
  • Immune Tolerance / immunology*
  • Lymphocyte Activation
  • Male
  • Mice
  • T-Box Domain Proteins / metabolism*
  • T-Lymphocytes, Regulatory / cytology
  • T-Lymphocytes, Regulatory / immunology*
  • T-Lymphocytes, Regulatory / metabolism*
  • Th1 Cells / cytology
  • Th1 Cells / immunology*
  • Th17 Cells / cytology
  • Th17 Cells / immunology
  • Th2 Cells / cytology
  • Th2 Cells / immunology

Substances

  • T-Box Domain Proteins
  • T-box transcription factor TBX21