Transmembrane TNF-alpha promotes chemoresistance in breast cancer cells

Oncogene. 2018 Jun;37(25):3456-3470. doi: 10.1038/s41388-018-0221-4. Epub 2018 Mar 21.

Abstract

Chemoresistance remains a major obstacle to successful treatment of breast cancer. Although soluble tumor necrosis factor-α (sTNF-α) has been implicated in mediating drug-resistance in human cancers, whether transmembrane tumor necrosis factor-α (tmTNF-α) plays a role in chemoresistance remains unclear. Here we found that over 50% of studied patients expressed tmTNF-α at high levels in breast cancer tissues and tmTNF-α expression positively correlated with resistance to anthracycline chemotherapy. Alteration of tmTNF-α expression changed the sensitivity of primary human breast cancer cells and breast cancer cell lines to doxorubicin (DOX). Overexpression of N-terminal fragment (NTF) of tmTNF-α, a mutant form with intact intracellular domain of tmTNF-α to transmit reverse signals, induced DOX-resistance. Mechanistically, the tmTNF-α/NTF-ERK-GST-π axis and tmTNF-α/NTF-NF-κB-mediated anti-apoptotic functions were required for tmTNF-α-induced DOX-resistance. In a xenograft mouse model, the combination of tmTNF-α suppression with chemotherapy significantly enhanced the efficacy of DOX. Our data indicate that tmTNF-α mediates DOX-resistance through reverse signaling and targeting tmTNF-α may be beneficial for the treatment of DOX-resistant breast cancer.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antibiotics, Antineoplastic / pharmacology
  • Apoptosis
  • Biomarkers, Tumor / genetics
  • Biomarkers, Tumor / metabolism*
  • Breast Neoplasms / drug therapy
  • Breast Neoplasms / metabolism
  • Breast Neoplasms / pathology*
  • Cell Adhesion
  • Cell Membrane / metabolism*
  • Cell Proliferation
  • Doxorubicin / pharmacology*
  • Drug Resistance, Neoplasm*
  • Female
  • Humans
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • Middle Aged
  • Neoplasm Invasiveness
  • Prognosis
  • Signal Transduction
  • Tumor Cells, Cultured
  • Tumor Necrosis Factor-alpha / genetics
  • Tumor Necrosis Factor-alpha / metabolism*
  • Xenograft Model Antitumor Assays

Substances

  • Antibiotics, Antineoplastic
  • Biomarkers, Tumor
  • Tumor Necrosis Factor-alpha
  • Doxorubicin